login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A375905
E.g.f. satisfies A(x) = (1 - log(1 - x * A(x)^(1/3)))^3.
1
1, 3, 15, 111, 1116, 14352, 226176, 4233492, 91936080, 2274815712, 63220205736, 1950659365608, 66187523184048, 2450020566119760, 98269427218682880, 4246150991775421824, 196657057172519603712, 9719485198364207149056, 510628699670802850684800
OFFSET
0,2
FORMULA
E.g.f.: B(x)^3, where B(x) is the e.g.f. of A138013.
E.g.f.: A(x) = ( (1/x) * Series_Reversion(x / (1 - log(1-x))) )^3.
a(n) = 3 * (n+2)! * Sum_{k=0..n} |Stirling1(n,k)|/(n-k+3)!.
PROG
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace((serreverse(x/(1-log(1-x)))/x)^3))
(PARI) a(n) = 3*(n+2)!*sum(k=0, n, abs(stirling(n, k, 1))/(n-k+3)!);
CROSSREFS
Sequence in context: A360864 A201339 A370877 * A254789 A112936 A001063
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Sep 02 2024
STATUS
approved