login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A157738
18522n - 42.
3
18480, 37002, 55524, 74046, 92568, 111090, 129612, 148134, 166656, 185178, 203700, 222222, 240744, 259266, 277788, 296310, 314832, 333354, 351876, 370398, 388920, 407442, 425964, 444486, 463008, 481530, 500052, 518574, 537096, 555618
OFFSET
1,1
COMMENTS
The identity (388962*n^2-1764*n+1)^2-(441*n^2-2*n)*(18522*n-42)^2=1 can be written as A157739(n)^2-A157737(n)*a(n)^2=1. - Vincenzo Librandi, Jan 25 2012
This is the case s=21 of the identity (2*s^4*n^2-4*s^2*n+1)^2-(s^2*n^2-2*n)*(2*s^3*n-2*s)^2=1. - Bruno Berselli, Feb 05 2011
FORMULA
G.f.: x*(18480+42*x)/(x-1)^2. - Vincenzo Librandi, Jan 25 2012
a(n) = 2*a(n-1) - a(n-2). - Vincenzo Librandi, Jan 25 2012
MAPLE
A157738:=n->18522*n - 42; seq(A157738(n), n=1..40); # Wesley Ivan Hurt, Feb 26 2014
MATHEMATICA
LinearRecurrence[{2, -1}, {18480, 37002}, 40] (* Vincenzo Librandi, Jan 25 2012 *)
PROG
(Magma) I:=[18480, 37002]; [n le 2 select I[n] else 2*Self(n-1)-Self(n-2): n in [1..40]]; // Vincenzo Librandi, Jan 25 2012
(PARI) for(n=1, 22, print1(18522*n - 42", ")); \\ Vincenzo Librandi, Jan 25 2012
CROSSREFS
Sequence in context: A375908 A209895 A190110 * A247205 A173274 A237012
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Mar 05 2009
STATUS
approved