Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #14 Sep 20 2024 06:26:47
%S 18446,39766,74306,83434,94106,100346,107966,111154,111814,113366,
%T 140834,144754,145606,146014,147406,149854,154946,155702,156146,
%U 165346,171786,189034,190618,191806,197354,201686,203314,206194,211394,211946,219386,231286,234394,253114,258266,262294,263966
%N Sphenic numbers that are sandwiched between products of exactly 4 distinct primes (or tetraprimes).
%C Terms are of the form 4*k+2.
%e 18446 = 2 * 23 * 401 (between 18445 = 5*7*17*31 and 18447 = 3*11*13*43).
%e 39766 = 2 * 59 * 337 (between 39765 = 3*5*11*241 and 39767 = 7*13*19*23).
%e 74306 = 2 * 53 * 701 (between 74305 = 5*7*11*193 and 74307 = 3*17*31*47).
%p N:= 5*10^5: # for terms <= N
%p P:= select(isprime,[seq(i,i=3..N/3,2)]): nP:= nops(P):
%p R:= NULL:
%p for i from 1 to nP while 2*P[i]*P[i+1] <= N do
%p for j from i+1 to nP do
%p x:= 2*P[i]*P[j];
%p if x > N then break fi;
%p if numtheory:-bigomega(x-1) = 4 and numtheory:-bigomega(x+1) = 4 and
%p numtheory:-issqrfree(x-1) and numtheory:-issqrfree(x+1) then
%p R:= R,x
%p fi
%p od od:
%p sort([R]); # _Robert Israel_, Sep 02 2024
%t e[n_] := FactorInteger[n][[;; , 2]]; SequencePosition[e /@ Range[300000], {{1, 1, 1, 1}, {1, 1, 1}, {1, 1, 1, 1}}][[;; , 1]] + 1 (* _Amiram Eldar_, Sep 02 2024 *)
%Y Cf. A007304, A046386. Subsequence of A075819.
%K nonn
%O 1,1
%A _Massimo Kofler_, Sep 02 2024