login
A373679
Sums of maximal antiruns of non-prime-powers.
24
43, 53, 21, 163, 34, 35, 74, 39, 126, 45, 144, 51, 106, 55, 56, 57, 180, 128, 134, 69, 216, 75, 76, 77, 324, 85, 86, 87, 178, 91, 92, 93, 94, 95, 194, 99, 306, 105, 324, 111, 226, 115, 116, 117, 118, 119, 242, 123, 379, 262, 133, 134, 135, 414, 141, 142, 143
OFFSET
1,1
COMMENTS
An antirun of a sequence (in this case A361102) is an interval of positions at which consecutive terms differ by more than one.
EXAMPLE
The maximal antiruns of non-prime-powers begin:
1 6 10 12 14
15 18 20
21
22 24 26 28 30 33
34
35
36 38
39
40 42 44
45
46 48 50
51
52 54
55
56
57
58 60 62
63 65
MATHEMATICA
Total/@Split[Select[Range[100], !PrimePowerQ[#]&], #1+1!=#2&]//Most
CROSSREFS
See link for composite, prime, nonsquarefree, and squarefree runs/antiruns.
Prime-power runs: A373675, min A373673, max A373674, length A174965.
Non-prime-power runs: A373678, min A373676, max A373677, length A110969.
Prime-power antiruns: A373576, min A120430, max A006549, length A373671.
Non-prime-power antiruns: A373679 (this sequence), min A373575, max A255346, length A373672.
A000040 lists the primes, differences A001223.
A000961 lists all powers of primes. A246655 lists just prime-powers.
A025528 counts prime-powers up to n.
A057820 gives first differences of consecutive prime-powers, gaps A093555.
A356068 counts non-prime-powers up to n.
A361102 lists all non-prime-powers (A024619 if not including 1).
Sequence in context: A162464 A255224 A161406 * A128653 A080104 A095744
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jun 17 2024
STATUS
approved