login
A373677
Last element of each maximal run of non-prime-powers.
22
1, 6, 10, 12, 15, 18, 22, 24, 26, 28, 30, 36, 40, 42, 46, 48, 52, 58, 60, 63, 66, 70, 72, 78, 80, 82, 88, 96, 100, 102, 106, 108, 112, 120, 124, 126, 130, 136, 138, 148, 150, 156, 162, 166, 168, 172, 178, 180, 190, 192, 196, 198, 210, 222, 226, 228, 232, 238
OFFSET
1,2
COMMENTS
We consider 1 to be a power of a prime and a non-prime-power, but not a prime-power.
A run of a sequence (in this case A000961) is an interval of positions at which consecutive terms differ by one.
The first element of the same run is A373676.
Consists of all non-prime-powers k such that k+1 is a prime-power.
EXAMPLE
The maximal runs of non-prime-powers begin:
1
6
10
12
14 15
18
20 21 22
24
26
28
30
33 34 35 36
38 39 40
42
44 45 46
48
50 51 52
54 55 56 57 58
60
MATHEMATICA
Select[Range[100], !PrimePowerQ[#]&&PrimePowerQ[#+1]&]
CROSSREFS
See link for prime, composite, squarefree, and nonsquarefree runs/antiruns.
For runs of powers of primes:
- length A174965
- min A373673
- max A373674
- sum A373675
For runs of non-prime-powers:
- length A110969 (firsts A373669, sorted A373670)
- min A373676
- max A373677 (this sequence)
- sum A373678
For antiruns of prime-powers:
- length A373671
- min A120430
- max A006549
- sum A373576
For antiruns of non-prime-powers:
- length A373672
- min A373575
- max A255346
- sum A373679
A000961 lists all powers of primes. A246655 is just prime-powers so lacks 1.
A025528 counts prime-powers up to n.
A057820 gives first differences of consecutive prime-powers, gaps A093555.
A361102 lists all non-prime-powers (A024619 if not including 1).
Sequence in context: A362754 A143958 A294278 * A297366 A325472 A305188
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jun 16 2024
STATUS
approved