login
A373676
First element of each maximal run of non-prime-powers.
23
1, 6, 10, 12, 14, 18, 20, 24, 26, 28, 30, 33, 38, 42, 44, 48, 50, 54, 60, 62, 65, 68, 72, 74, 80, 82, 84, 90, 98, 102, 104, 108, 110, 114, 122, 126, 129, 132, 138, 140, 150, 152, 158, 164, 168, 170, 174, 180, 182, 192, 194, 198, 200, 212, 224, 228, 230, 234
OFFSET
1,2
COMMENTS
We consider 1 to be a power of a prime and a non-prime-power, but not a prime-power.
A run of a sequence (in this case A000961) is an interval of positions at which consecutive terms differ by one.
The last element of the same run is A373677.
Consists of 1 and all non-prime-powers k such that k-1 is a power of a prime.
EXAMPLE
The maximal runs of non-prime-powers begin:
1
6
10
12
14 15
18
20 21 22
24
26
28
30
33 34 35 36
38 39 40
42
44 45 46
48
50 51 52
54 55 56 57 58
60
MATHEMATICA
Select[Range[100], #==1||!PrimePowerQ[#]&&PrimePowerQ[#-1]&]
CROSSREFS
See link for prime, composite, squarefree, and nonsquarefree runs/antiruns.
For runs of powers of primes:
- length A174965
- min A373673
- max A373674
- sum A373675
For runs of non-prime-powers:
- length A110969 (firsts A373669, sorted A373670)
- min A373676 (this sequence)
- max A373677
- sum A373678
For antiruns of prime-powers:
- length A373671
- min A120430
- max A006549
- sum A373576
For antiruns of non-prime-powers:
- length A373672
- min A373575
- max A255346
- sum A373679
A000961 lists all powers of primes. A246655 is just prime-powers so lacks 1.
A025528 counts prime-powers up to n.
A057820 gives first differences of consecutive prime-powers, gaps A093555.
A361102 lists all non-prime-powers (A024619 if not including 1).
Sequence in context: A100367 A213716 A337486 * A114989 A362012 A334166
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jun 16 2024
STATUS
approved