OFFSET
0,3
COMMENTS
Exponential transform appears to be A333331. - Gus Wiseman, Feb 12 2024
LINKS
Andrew Howroyd, Table of n, a(n) for n = 0..200
Eric Weisstein's World of Mathematics, Graph Loop.
FORMULA
E.g.f.: 1 - log(1-T(x))/2 + T(x)/2 - T(x)^2/4 where T(x) = -LambertW(-x) is the e.g.f. of A000169.
From Peter Luschny, Jan 10 2024: (Start)
a(n) = (exp(n)*Gamma(n + 1, n) - (n - 1)*n^(n - 1))/(2*n) for n > 0.
EXAMPLE
From Gus Wiseman, Feb 12 2024: (Start)
The a(0) = 1 through a(3) = 10 loop-graphs:
{} {11} {11,12} {11,12,13}
{22,12} {11,12,23}
{11,13,23}
{22,12,13}
{22,12,23}
{22,13,23}
{33,12,13}
{33,12,23}
{33,13,23}
{12,13,23}
(End)
MAPLE
egf:= (L-> 1-L/2-log(1+L)/2-L^2/4)(LambertW(-x)):
a:= n-> n!*coeff(series(egf, x, n+1), x, n):
seq(a(n), n=0..25); # Alois P. Heinz, Jan 10 2024
PROG
(PARI) seq(n)={my(t=-lambertw(-x + O(x*x^n))); Vec(serlaplace(-log(1-t)/2 + t/2 - t^2/4 + 1))}
CROSSREFS
KEYWORD
nonn
AUTHOR
Andrew Howroyd, Jan 10 2024
STATUS
approved