OFFSET
0,4
COMMENTS
The axiom of choice says that, given any set of nonempty sets Y, it is possible to choose a set containing an element from each. The strict version requires this set to have the same cardinality as Y, meaning no element is chosen more than once.
LINKS
Wikipedia, Axiom of choice.
EXAMPLE
The a(3) = 3 set-systems:
{{1},{2},{1,2}}
{{1},{3},{1,3}}
{{2},{3},{2,3}}
MATHEMATICA
Table[Length[Select[Subsets[Rest[Subsets[Range[n]]], {n}], Length[Select[Tuples[#], UnsameQ@@#&]]==0&]], {n, 0, 3}]
PROG
(Python)
from itertools import combinations, product, chain
from scipy.special import comb
def v(c):
for elements in product(*c):
if len(set(elements)) == len(elements):
return True
return False
def a(n):
if n == 0:
return 1
subsets = list(chain.from_iterable(combinations(range(1, n + 1), r) for r in range(1, n + 1)))
cs = combinations(subsets, n)
c = sum(1 for c in cs if v(c))
return c
[print(int(comb(2**n-1, n) - a(n))) for n in range(7)] # Robert P. P. McKone, Jan 02 2024
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Gus Wiseman, Jan 01 2024
EXTENSIONS
a(6) from Robert P. P. McKone, Jan 02 2024
a(7)-a(8) from Christian Sievers, Jul 25 2024
STATUS
approved