login
A368948
First track of a certain single track permutation.
1
0, 1, 2, 2, 1, 0, 1, 0, 0, 1, 2, 2, 3, 3, 3, 3, 3, 3, 2, 2, 1, 0, 0, 1, 2, 2, 1, 0, 0, 1, 0, 1, 2, 2, 1, 0, 1, 0, 0, 1, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 2, 2, 1, 0, 0, 1, 0, 1, 2, 2, 1, 0, 1, 0, 0, 1, 2, 2, 1, 0, 0, 1, 2, 2, 3, 3, 3, 3, 3, 3, 2, 2, 1, 0, 0, 1, 0, 1, 2, 2, 1, 0
OFFSET
0,3
COMMENTS
Generate permutations of [0,1,2,3,...,n] by counting in the (rising) factorial number system and let j be its track incremented, then do the following swaps corresponding to j:
j: swaps (elements in permutation, or positions in inverse permutation)
0: (0,1)
1: (1,2)
2: (0,1) (2,3) once every 3! = 6 times
3: (1,2) (3,4)
4: (0,1) (2,3) (4,5) once every 5! = 120 times
5: (1,2) (3,4) (5,6)
6: (0,1) (2,3) (4,5) (6,7) once every 7! = 5040 times
j: (m, m+1) (m+2, m+3) ... (j, j+1) where m = j%2
(the average number of swaps is 1 + 1/3!*(1 + 1/5!*(1 + 1/7!*(...))) = 1.16805...).
The resulting permutations have the single track property: all tracks (columns under "permutation" in the example) are cyclic shifts of the first track.
EXAMPLE
In the following dots denote zeros.
permutation inverse factorial j: swaps
permutation number
0: [ . 1 2 3 ] [ . 1 2 3 ] [ . . . ]
1: [ 1 . 2 3 ] [ 1 . 2 3 ] [ 1 . . ] 0: (0,1)
2: [ 2 . 1 3 ] [ 1 2 . 3 ] [ . 1 . ] 1: (1,2)
3: [ 2 1 . 3 ] [ 2 1 . 3 ] [ 1 1 . ] 0: (0,1)
4: [ 1 2 . 3 ] [ 2 . 1 3 ] [ . 2 . ] 1: (1,2)
5: [ . 2 1 3 ] [ . 2 1 3 ] [ 1 2 . ] 0: (0,1)
6: [ 1 3 . 2 ] [ 2 . 3 1 ] [ . . 1 ] 2: (0,1) (2,3)
7: [ . 3 1 2 ] [ . 2 3 1 ] [ 1 . 1 ] 0: (0,1)
8: [ . 3 2 1 ] [ . 3 2 1 ] [ . 1 1 ] 1: (1,2)
9: [ 1 3 2 . ] [ 3 . 2 1 ] [ 1 1 1 ] 0: (0,1)
10: [ 2 3 1 . ] [ 3 2 . 1 ] [ . 2 1 ] 1: (1,2)
11: [ 2 3 . 1 ] [ 2 3 . 1 ] [ 1 2 1 ] 0: (0,1)
12: [ 3 2 1 . ] [ 3 2 1 . ] [ . . 2 ] 2: (0,1) (2,3)
13: [ 3 2 . 1 ] [ 2 3 1 . ] [ 1 . 2 ] 0: (0,1)
14: [ 3 1 . 2 ] [ 2 1 3 . ] [ . 1 2 ] 1: (1,2)
15: [ 3 . 1 2 ] [ 1 2 3 . ] [ 1 1 2 ] 0: (0,1)
16: [ 3 . 2 1 ] [ 1 3 2 . ] [ . 2 2 ] 1: (1,2)
17: [ 3 1 2 . ] [ 3 1 2 . ] [ 1 2 2 ] 0: (0,1)
18: [ 2 . 3 1 ] [ 1 3 . 2 ] [ . . 3 ] 2: (0,1) (2,3)
19: [ 2 1 3 . ] [ 3 1 . 2 ] [ 1 . 3 ] 0: (0,1)
20: [ 1 2 3 . ] [ 3 . 1 2 ] [ . 1 3 ] 1: (1,2)
21: [ . 2 3 1 ] [ . 3 1 2 ] [ 1 1 3 ] 0: (0,1)
22: [ . 1 3 2 ] [ . 1 3 2 ] [ . 2 3 ] 1: (1,2)
23: [ 1 . 3 2 ] [ 1 . 3 2 ] [ 1 2 3 ] 0: (0,1)
CROSSREFS
Sequence in context: A359440 A377942 A347687 * A368579 A287331 A179769
KEYWORD
nonn
AUTHOR
Joerg Arndt, Jan 10 2024
STATUS
approved