login
A368983
Number of connected graphs with loops (symmetric relations) on n unlabeled vertices with n edges.
8
1, 1, 1, 3, 6, 14, 33, 81, 204, 526, 1376, 3648, 9792, 26485, 72233, 198192, 546846, 1515687, 4218564, 11782427, 33013541, 92759384, 261290682, 737688946, 2086993034, 5915398230, 16795618221, 47763406249, 136028420723, 387928330677, 1107692471888, 3166613486137
OFFSET
0,4
COMMENTS
The graphs considered here can have loops but not parallel edges.
LINKS
FORMULA
a(n) = A000081(n) + A001429(n) = A068051(n) - A027852(n) for n > 0.
EXAMPLE
Representatives of the a(3) = 3 graphs are:
{{1,2}, {1,3}, {2,3}},
{{1}, {1,2}, {1,3}},
{{1}, {1,2}, {2,3}}.
PROG
(PARI) \\ TreeGf gives gf of A000081.
TreeGf(N)={my(A=vector(N, j, 1)); for (n=1, N-1, A[n+1] = 1/n * sum(k=1, n, sumdiv(k, d, d*A[d]) * A[n-k+1] ) ); x*Ser(A)}
seq(n)={my(t=TreeGf(n)); my(g(e)=subst(t + O(x*x^(n\e)), x, x^e) + O(x*x^n)); Vec(1 + (sum(d=1, n, eulerphi(d)/d*log(1/(1-g(d)))) + ((1+g(1))^2/(1-g(2))-1)/2 - (g(1)^2 + g(2)))/2)}
CROSSREFS
A diagonal of A322114.
The labeled version is A368951.
Cf. A000081, A001429, A027852, A068051, A283755, A368984 (not necessarily connected).
Sequence in context: A192678 A114945 A003477 * A339600 A078062 A275873
KEYWORD
nonn
AUTHOR
Andrew Howroyd, Jan 11 2024
STATUS
approved