login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A366987
Triangle read by rows: T(n, k) = -(2^(n - k)*(-1)^n + 2^k + (-1)^k)/3.
1
-1, 0, 0, -2, -1, -2, 2, 1, -1, -2, -6, -3, -3, -3, -6, 10, 5, 1, -1, -5, -10, -22, -11, -7, -5, -7, -11, -22, 42, 21, 9, 3, -3, -9, -21, -42, -86, -43, -23, -13, -11, -13, -23, -43, -86, 170, 85, 41, 19, 5, -5, -19, -41, -85, -170, -342, -171, -87, -45, -27, -21, -27, -45, -87, -171, -342
OFFSET
0,4
LINKS
Paolo Xausa, Table of n, a(n) for n = 0..11475 (rows 0..150 of the triangle, flattened)
FORMULA
T(n, 0) = -((-2)^n + 2)/3.
T(n, k+1) - T(n, k) = T(n-1, k) + (-1)^k.
T(2*n+1, n) = A001045(n).
T(2*n+1, n+1) = -A001045(n).
T(2*n, n+1) = -A048573(n-1), for n > 0.
Note that the definition of T extends to negative parameters:
T(2*n-2, n-1) = -A001045(n).
-2^n*Sum_{k=0..n} (-1)^k*T(-n, -k) = A059570(n+1).
-4^n*Sum_{k=0..2*n} T(-2*n, -k) = A020989(n).
-Sum_{k=0..n} (-1)^k*T(n, k) = A077898(n). See also A053088.
Sum_{k = 0..2*n} |T(2*n, k)| = (4^(n+1) - 1)/3.
Sum_{k = 0..2*n+1} |T(2*n+1, k)| = (1 + (-1)^n - 2^(2 + n) + 2^(1 + 2*n))/3.
G.f.: (-1 - x + x*y)/((1 - x)*(1 + 2*x)*(1 + x*y)*(1 - 2*x*y)). - Stefano Spezia, Nov 03 2023
EXAMPLE
Triangle T(n, k) starts:
-1
0 0
-2 -1 -2
2 1 -1 -2
-6 -3 -3 -3 -6
10 5 1 -1 -5 -10
-22 -11 -7 -5 -7 -11 -22
42 21 9 3 -3 -9 -21 -42
...
Note the symmetrical distribution of the absolute values of the terms in each row.
MAPLE
T := (n, k) -> -(2^(n-k)*(-1)^n + 2^k + (-1)^k)/3:
seq(seq(T(n, k), k = 0..n), n = 0..10); # Peter Luschny, Nov 02 2023
MATHEMATICA
A366987row[n_]:=Table[-(2^(n-k)(-1)^n+2^k+(-1)^k)/3, {k, 0, n}]; Array[A366987row, 15, 0] (* Paolo Xausa, Nov 07 2023 *)
PROG
(PARI) T(n, k) = (-2^(k+1) + 2*(-1)^(k+1) + (-1)^(n+1)*2^(1+n-k))/6 \\ Thomas Scheuerle, Nov 01 2023
CROSSREFS
Rows sums: -A282577(n+2), if the conjectures from Colin Barker in A282577 are true.
First column: -(-1)^n * A078008(n).
Second column: (-1)^n * A001045(n).
Third column: -A140966(n).
Fourth column: (-1)^n * A155980(n+2).
Sequence in context: A078573 A143786 A232353 * A304093 A238580 A035176
KEYWORD
sign,tabl
AUTHOR
Paul Curtz and Thomas Scheuerle, Oct 31 2023
EXTENSIONS
a(42) corrected by Paolo Xausa, Nov 07 2023
STATUS
approved