login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A232353
Number of ways to write n = k + m with k > 0 and m > 0 such that p = prime(k) + phi(m) and p*(p+1) - prime(p) are both prime, where phi(.) is Euler's totient function.
5
0, 1, 1, 0, 1, 1, 0, 1, 1, 2, 1, 2, 2, 1, 1, 2, 4, 3, 2, 6, 3, 4, 4, 5, 5, 3, 4, 2, 6, 5, 4, 6, 5, 4, 6, 7, 1, 6, 4, 8, 6, 6, 7, 4, 5, 10, 5, 3, 4, 6, 7, 6, 6, 9, 6, 3, 7, 7, 10, 5, 9, 7, 7, 6, 5, 8, 9, 4, 6, 9, 8, 5, 8, 5, 8, 8, 5, 6, 7, 9, 10, 8, 8, 8, 11, 10, 11, 7, 8, 13, 9, 6, 12, 10, 5, 9, 7, 8, 14, 8
OFFSET
1,10
COMMENTS
Conjecture: a(n) > 0 for all n > 7.
This implies that there are infinitely many primes p with p*(p+1) - prime(p) prime.
EXAMPLE
a(14) = 1 since 14 = 4 + 10 with prime(4) + phi(10) = 11 and 11*12 - prime(11) = 101 both prime.
a(15) = 1 since 15 = 6 + 9 with prime(6) + phi(9) = 19 and 19*20 - prime(19) = 313 both prime.
a(37) = 1 since 37 = 23 + 14 with prime(23) + phi(14) = 89 and 89*90 - prime(89) = 7549 both prime.
MATHEMATICA
PQ[n_]:=PrimeQ[n]&&PrimeQ[n(n+1)-Prime[n]]
f[n_, k_]:=Prime[k]+EulerPhi[n-k]
a[n_]:=Sum[If[PQ[f[n, k]], 1, 0], {k, 1, n-1}]
Table[a[n], {n, 1, 100}]
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Jan 13 2014
STATUS
approved