login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A238580
a(n) = |{0 < k <= n: 2*k + 1 and prime(k)*prime(n) - 2 are both prime}|.
4
1, 1, 2, 1, 2, 2, 1, 1, 3, 1, 2, 3, 2, 3, 3, 3, 2, 4, 2, 3, 3, 3, 2, 3, 2, 2, 3, 1, 1, 5, 3, 4, 3, 1, 4, 3, 1, 5, 4, 4, 2, 4, 5, 4, 5, 2, 5, 5, 3, 2, 4, 2, 4, 5, 3, 5, 2, 7, 4, 5, 2, 5, 4, 8, 4, 6, 5, 6, 5, 2, 5, 4, 3, 6, 2, 5, 1, 5, 8, 4
OFFSET
1,3
COMMENTS
Conjecture: a(n) > 0 for all n > 0, and a(n) = 1 only for n = 1, 2, 4, 7, 8, 10, 28, 34,37, 77.
Note that a prime p with p + 2 a product of at most two primes is called a Chen prime.
REFERENCES
J.-R. Chen, On the representation of a large even integer as the sum of a prime and a product of at most two primes, Sci. Sinica 16(1973), 157-176.
LINKS
Zhi-Wei Sun, Problems on combinatorial properties of primes, arXiv:1402.6641, 2014.
EXAMPLE
a(7) = 1 since 2*3 + 1 = 7 and prime(3)*prime(7) - 2 = 5*17 - 2 = 83 are both prime.
a(8) = 1 since 2*8 + 1 = 17 and prime(8)*prime(8) - 2 = 19^2 - 2 = 359 are both prime.
a(77) = 1 since 2*20 + 1 = 41 and prime(20)*prime(77) - 2 = 71*389 - 2 = 27617 are both prime.
MATHEMATICA
p[n_, k_]:=PrimeQ[2k+1]&&PrimeQ[Prime[n]*Prime[k]-2]
a[n_]:=Sum[If[p[n, k], 1, 0], {k, 1, n}]
Table[a[n], {n, 1, 80}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Mar 01 2014
STATUS
approved