login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A020989
a(n) = (5*4^n - 2)/3.
29
1, 6, 26, 106, 426, 1706, 6826, 27306, 109226, 436906, 1747626, 6990506, 27962026, 111848106, 447392426, 1789569706, 7158278826, 28633115306, 114532461226, 458129844906, 1832519379626, 7330077518506, 29320310074026, 117281240296106, 469124961184426
OFFSET
0,2
COMMENTS
Let Zb[n](x) = polynomial in x whose coefficients are the corresponding digits of index n in base b. Then Z2[(5*4^k-2)/3](1/tau) = 1. - Marc LeBrun, Mar 01 2001
a(n)=number of derangements of [2n+2] with runs consisting of consecutive integers. E.g., a(1)=6 because the derangements of {1,2,3,4} with runs consisting of consecutive integers are 4|123, 34|12, 4|3|12, 4|3|2|1, 234|1 and 34|2|1 (the bars delimit the runs). - Emeric Deutsch, May 26 2003
Sum of n-th row of triangle of powers of 4: 1; 1 4 1; 1 4 16 4 1; 1 4 16 64 16 4 1; ... - Philippe Deléham, Feb 22 2014
REFERENCES
Clifford A. Pickover, A Passion for Mathematics, John Wiley & Sons, Inc., 2005, at pp. 104 and 311 (for "Mr. Zanti's ants").
LINKS
John Brillhart and Patrick Morton, Über Summen von Rudin-Shapiroschen Koeffizienten, Illinois Journal of Mathematics, volume 22, issue 1, 1978, pages 126-148. See Satz 9(a) page 132 and Satz 21 page 144 m_k = a(k).
John Brillhart and Patrick Morton, A case study in mathematical research: the Golay-Rudin-Shapiro sequence, Amer. Math. Monthly, 103 (1996) 854-869, see page 858 m_k = a(k).
FORMULA
a(0) = 1, a(n) = 4*a(n-1) + 2; a(n) = a(n-1)+ 5*{4^(n-1)}; - Amarnath Murthy, May 27 2001
G.f.: (1+x)/((1-4*x)*(1-x)). - Zerinvary Lajos, Jan 11 2009; adapted to offset by Philippe Deléham, Feb 22 2014
a(n) = 5*a(n-1) - 4*a(n-2), a(0) = 1, a(1) = 6. - Philippe Deléham, Feb 22 2014
a(n) = Sum_{k=0..n} A112468(n,k)*5^k. - Philippe Deléham, Feb 22 2014
a(n) = (A020988(n) + A020988(n+1))/2. - Yosu Yurramendi, Jan 23 2017
a(n) = A002450(n) + A002450(n+1). - Yosu Yurramendi, Jan 24 2017
a(n) = 10*A020988(n-1) + 6. - Yosu Yurramendi, Feb 19 2017
E.g.f.: exp(x)*(5*exp(3*x) - 2)/3. - Stefano Spezia, Apr 10 2022
EXAMPLE
a(0) = 1;
a(1) = 1 + 4 + 1 = 6;
a(2) = 1 + 4 + 16 + 4 + 1 = 26;
a(3) = 1 + 4 + 16 + 64 + 16 + 4 + 1 = 106; etc. - Philippe Deléham, Feb 22 2014
MATHEMATICA
NestList[4#+2&, 1, 25] (* Harvey P. Dale, Jul 23 2011 *)
PROG
(Magma) [(5*4^n-2)/3: n in [0..25]]; // Vincenzo Librandi, Jul 24 2011
(PARI) a(n)=(5*4^n-2)/3 \\ Charles R Greathouse IV, Jul 02 2013
CROSSREFS
A column of A119726.
Sequence in context: A037545 A371438 A027996 * A079675 A113991 A267578
KEYWORD
nonn,easy
STATUS
approved