login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A354692
Smallest Euler-Jacobi pseudoprime to all natural bases up to prime(n) - 1 that is not a base prime(n) Euler-Jacobi pseudoprime.
0
9, 561, 10585, 1729, 488881, 399001, 2433601, 1857241, 6189121, 549538081, 50201089, 14469841, 86566959361, 311963097601, 369838909441, 31929487861441, 6389476833601, 8493512837546881, 31585234281457921, 10120721237827201, 289980482095624321, 525025434548260801, 91230634325542321
OFFSET
1,1
COMMENTS
An Euler-Jacobi pseudoprime to the base b is an odd composite number k such that gcd(b, k) = 1 and the Jacobi symbol (.,.) satisfies b^((k-1)/2) == (b,k) (mod k).
a(n) is coprime to A002110(n-1).
a(24) > 2^64. - Daniel Suteu, Jun 05 2022
LINKS
Eric Weisstein's World of Mathematics, Euler-Jacobi Pseudoprime.
PROG
(PARI) a(n) = my(b, p=factorback(primes(n-1))); forcomposite(k=9, oo, if(gcd(k, p)==1, b=2; while(Mod(b, k)^(k\2) == kronecker(b, k), b++); if(b==prime(n), return(k))));
CROSSREFS
KEYWORD
nonn
AUTHOR
Jinyuan Wang, Jun 03 2022
EXTENSIONS
a(13)-a(23) from Daniel Suteu, Jun 05 2022
STATUS
approved