login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Smallest Euler-Jacobi pseudoprime to all natural bases up to prime(n) - 1 that is not a base prime(n) Euler-Jacobi pseudoprime.
0

%I #10 Jun 05 2022 08:28:06

%S 9,561,10585,1729,488881,399001,2433601,1857241,6189121,549538081,

%T 50201089,14469841,86566959361,311963097601,369838909441,

%U 31929487861441,6389476833601,8493512837546881,31585234281457921,10120721237827201,289980482095624321,525025434548260801,91230634325542321

%N Smallest Euler-Jacobi pseudoprime to all natural bases up to prime(n) - 1 that is not a base prime(n) Euler-Jacobi pseudoprime.

%C An Euler-Jacobi pseudoprime to the base b is an odd composite number k such that gcd(b, k) = 1 and the Jacobi symbol (.,.) satisfies b^((k-1)/2) == (b,k) (mod k).

%C a(n) is coprime to A002110(n-1).

%C a(24) > 2^64. - _Daniel Suteu_, Jun 05 2022

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Euler-JacobiPseudoprime.html">Euler-Jacobi Pseudoprime</a>.

%o (PARI) a(n) = my(b, p=factorback(primes(n-1))); forcomposite(k=9, oo, if(gcd(k, p)==1, b=2; while(Mod(b, k)^(k\2) == kronecker(b, k), b++); if(b==prime(n), return(k))));

%Y Cf. A002110, A007324, A047713, A285549, A354694.

%K nonn

%O 1,1

%A _Jinyuan Wang_, Jun 03 2022

%E a(13)-a(23) from _Daniel Suteu_, Jun 05 2022