login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A373882
Number of lattice points inside or on the 4-dimensional hypersphere x^2 + y^2 + z^2 + u^2 = 10^n.
6
9, 569, 49689, 4937225, 493490641, 49348095737, 4934805110729, 493480252693889, 49348022079085897, 4934802199975704129, 493480220066583590433, 49348022005552308828457, 4934802200546833521392241, 493480220054489318828539601, 49348022005446802425711456713, 4934802200544679211736756034457
OFFSET
0,1
FORMULA
a(n) = A046895(10^n).
a(n) == 1 (mod 8).
Limit_{n->oo} a(n) = Pi^2*100^n/2. - Hugo Pfoertner, Jun 21 2024
PROG
(PARI) b(k, n) = my(q='q+O('q^(n+1))); polcoef((eta(q^2)^5/(eta(q)^2*eta(q^4)^2))^k/(1-q), n);
a(n) = b(4, 10^n);
(Python)
from math import isqrt
def A373882(n): return 1+((-(s:=isqrt(a:=10**n))**2*(s+1)+sum((q:=a//k)*((k<<1)+q+1) for k in range(1, s+1))&-1)<<2)+(((t:=isqrt(m:=a>>2))**2*(t+1)-sum((q:=m//k)*((k<<1)+q+1) for k in range(1, t+1))&-1)<<4) # Chai Wah Wu, Jun 21 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jun 21 2024
STATUS
approved