login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A291910
Number of 4-cycles in the n X n rook complement graph.
3
0, 0, 9, 576, 6900, 44100, 196245, 686784, 2023056, 5232600, 12224025, 26310240, 52936884, 100663836, 182452725, 317318400, 532407360, 865571184, 1368508041, 2110550400, 3183182100, 4705372980, 6829824309, 9750223296, 13709610000, 19009965000, 26023131225
OFFSET
1,3
LINKS
Eric Weisstein's World of Mathematics, Graph Cycle
Eric Weisstein's World of Mathematics, Rook Complement Graph
Index entries for linear recurrences with constant coefficients, signature (9, -36, 84, -126, 126, -84, 36, -9, 1).
FORMULA
a(n) = (n-2)*(n-1)^2*n^2*(-4 + 5*n - 4*n^2 + n^3)/8.
a(n) = 9*a(n-1) - 36*a(n-2) + 84*a(n-3) - 126*a(n-4) + 126*a(n-5) - 84*a(n-6) + 36*a(n-7) - 9*a(n-8) + a(n-9).
G.f.: -((3 x^3 (3 + 165 x + 680 x^2 + 660 x^3 + 165 x^4 + 7 x^5))/(-1 + x)^9).
MATHEMATICA
Table[(-2 + n) (-1 + n)^2 n^2 (-4 + 5 n - 4 n^2 + n^3)/8, {n, 20}]
LinearRecurrence[{9, -36, 84, -126, 126, -84, 36, -9, 1}, {0, 0, 9, 576, 6900, 44100, 196245, 686784, 2023056}, 30]
CoefficientList[Series[-((3 x^2 (3 + 165 x + 680 x^2 + 660 x^3 + 165 x^4 + 7 x^5))/(-1 + x)^9), {x, 0, 20}], x]
CROSSREFS
Cf. A179058 (3-cycles), A291911 (5-cycles), A291912 (6-cycles).
Sequence in context: A354692 A373882 A347844 * A074731 A064560 A264121
KEYWORD
nonn
AUTHOR
Eric W. Weisstein, Sep 05 2017
STATUS
approved