OFFSET
1,5
COMMENTS
See comments in A349127.
LINKS
FORMULA
Multiplicative with a(2^e) = 1, and for odd primes p, a(p^e) = (q - 1)*q^(e-1), where q = prevprime(p), where prevprime is A151799.
For odd n, a(n) = A349127(n), for even n, a(n) = a(n/2).
For all n >= 1, a(n) = a(2*n) = a(A000265(n)).
Sum_{k=1..n} a(k) ~ c * n^2, where c = (64/(3*Pi^4)) / Product_{p prime > 2} (1+1/p-q(p)/p^2-q(p)/p^3) = 0.17889586..., where q(p) = prevprime(p) = A151799(p). - Amiram Eldar, Dec 24 2022
MATHEMATICA
f[p_, e_] := If[p == 2, 1, Module[{q = NextPrime[p, -1]}, (q - 1)*q^(e - 1)]]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Dec 24 2022 *)
PROG
(PARI) A349128(n) = { my(f = factor(n), q); prod(i=1, #f~, if(2==f[i, 1], 1, q = precprime(f[i, 1]-1); (q-1)*(q^(f[i, 2]-1)))); };
KEYWORD
nonn,mult
AUTHOR
Antti Karttunen, Nov 13 2021
STATUS
approved