login
A323300
Number of ways to fill a matrix with the parts of the integer partition with Heinz number n.
17
1, 1, 1, 2, 1, 4, 1, 2, 2, 4, 1, 6, 1, 4, 4, 3, 1, 6, 1, 6, 4, 4, 1, 12, 2, 4, 2, 6, 1, 12, 1, 2, 4, 4, 4, 18, 1, 4, 4, 12, 1, 12, 1, 6, 6, 4, 1, 10, 2, 6, 4, 6, 1, 12, 4, 12, 4, 4, 1, 36, 1, 4, 6, 4, 4, 12, 1, 6, 4, 12, 1, 20, 1, 4, 6, 6, 4, 12, 1, 10, 3, 4
OFFSET
1,4
COMMENTS
The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
FORMULA
a(n) = A008480(n) * A000005(A001222(n)).
EXAMPLE
The a(24) = 12 matrices whose entries are (2,1,1,1):
[1 1 1 2] [1 1 2 1] [1 2 1 1] [2 1 1 1]
.
[1 1] [1 1] [1 2] [2 1]
[1 2] [2 1] [1 1] [1 1]
.
[1] [1] [1] [2]
[1] [1] [2] [1]
[1] [2] [1] [1]
[2] [1] [1] [1]
MATHEMATICA
primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
facs[n_]:=If[n<=1, {{}}, Join@@Table[Map[Prepend[#, d]&, Select[facs[n/d], Min@@#>=d&]], {d, Rest[Divisors[n]]}]];
ptnmats[n_]:=Union@@Permutations/@Select[Union@@(Tuples[Permutations/@#]&/@Map[primeMS, facs[n], {2}]), SameQ@@Length/@#&];
Array[Length[ptnmats[#]]&, 100]
CROSSREFS
Positions of 1's are one and prime numbers A008578.
Positions of 2's are primes to prime powers A053810.
Sequence in context: A258127 A181982 A070194 * A349128 A366450 A105584
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jan 12 2019
STATUS
approved