login
A003972
Moebius transform of A003961; a(n) = phi(A003961(n)), where A003961 shifts the prime factorization of n one step towards the larger primes.
38
1, 2, 4, 6, 6, 8, 10, 18, 20, 12, 12, 24, 16, 20, 24, 54, 18, 40, 22, 36, 40, 24, 28, 72, 42, 32, 100, 60, 30, 48, 36, 162, 48, 36, 60, 120, 40, 44, 64, 108, 42, 80, 46, 72, 120, 56, 52, 216, 110, 84, 72, 96, 58, 200, 72, 180, 88, 60, 60, 144, 66, 72, 200, 486, 96, 96, 70
OFFSET
1,2
LINKS
Antti Karttunen, Table of n, a(n) for n = 1..20000 (first 1000 terms from Vincenzo Librandi)
FORMULA
Multiplicative with a(p^e) = (q-1)q^(e-1) where q = nextPrime(p). - David W. Wilson, Sep 01 2001
a(n) = A000010(A003961(n)) = A037225(A108228(n)) = A037225(A048673(n)-1). - Antti Karttunen, Aug 20 2020
Sum_{k=1..n} a(k) ~ c * n^2, where c = (3/Pi^2) * Product_{p prime} ((p^2-p)/(p^2 - nextPrime(p)) = 1.2547593344... . - Amiram Eldar, Nov 18 2022
MATHEMATICA
b[1] = 1; b[p_?PrimeQ] := b[p] = Prime[ PrimePi[p] + 1]; b[n_] := b[n] = Times @@ (b[First[#]]^Last[#] &) /@ FactorInteger[n]; a[n_] := Sum[ MoebiusMu[n/d]*b[d], {d, Divisors[n]}]; Table[a[n], {n, 1, 70}] (* Jean-François Alcover, Jul 18 2013 *)
PROG
(PARI) A003972(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); eulerphi(factorback(f)); }; \\ Antti Karttunen, Aug 20 2020
(Python)
from math import prod
from sympy import nextprime, factorint
def A003972(n): return prod((q:=nextprime(p))**(e-1)*(q-1) for p, e in factorint(n).items()) # Chai Wah Wu, Jul 18 2022
CROSSREFS
KEYWORD
nonn,mult
AUTHOR
EXTENSIONS
More terms from David W. Wilson, Aug 29 2001
Secondary name added by Antti Karttunen, Aug 20 2020
STATUS
approved