login
A340323
Multiplicative with a(p^e) = (p + 1) * (p - 1)^(e - 1).
5
1, 3, 4, 3, 6, 12, 8, 3, 8, 18, 12, 12, 14, 24, 24, 3, 18, 24, 20, 18, 32, 36, 24, 12, 24, 42, 16, 24, 30, 72, 32, 3, 48, 54, 48, 24, 38, 60, 56, 18, 42, 96, 44, 36, 48, 72, 48, 12, 48, 72, 72, 42, 54, 48, 72, 24, 80, 90, 60, 72, 62, 96, 64, 3, 84, 144, 68, 54
OFFSET
1,2
COMMENTS
Starting with any integer and repeatedly applying the map x -> a(x) reaches the fixed point 12 or the loop {3, 4}.
LINKS
FORMULA
a(n) = A167344(n) / A340368(n) = A048250(n) * A326297(n). - Antti Karttunen, Jan 06 2021
Sum_{k=1..n} a(k) ~ c * n^2, where c = (zeta(6)/(2*zeta(2)*zeta(3))) * Product_{p prime} (1 + 2/p^2) = 0.56361239505... . - Amiram Eldar, Nov 12 2022
EXAMPLE
a(2^s) = 3 for all s>0.
MAPLE
f:= proc(n) local t;
mul((t[1]+1)*(t[1]-1)^(t[2]-1), t=ifactors(n)[2])
end proc:
map(f, [$1..100]); # Robert Israel, Jan 07 2021
MATHEMATICA
fa[n_]:=fa[n]=FactorInteger[n];
phi[1]=1; phi[p_, s_]:= (p + 1)*( p - 1)^(s - 1)
phi[n_]:=Product[phi[fa[n][[i, 1]], fa[n][[i, 2]]], {i, Length[fa[n]]}];
Array[phi, 245]
PROG
(PARI) A340323(n) = if(1==n, n, my(f=factor(n)); prod(i=1, #f~, (f[i, 1]+1)*((f[i, 1]-1)^(f[i, 2]-1)))); \\ Antti Karttunen, Jan 06 2021
KEYWORD
nonn,mult
AUTHOR
STATUS
approved