login
A340368
Multiplicative with a(p^e) = (p - 1) * (p + 1)^(e-1).
4
1, 1, 2, 3, 4, 2, 6, 9, 8, 4, 10, 6, 12, 6, 8, 27, 16, 8, 18, 12, 12, 10, 22, 18, 24, 12, 32, 18, 28, 8, 30, 81, 20, 16, 24, 24, 36, 18, 24, 36, 40, 12, 42, 30, 32, 22, 46, 54, 48, 24, 32, 36, 52, 32, 40, 54, 36, 28, 58, 24, 60, 30, 48, 243, 48, 20, 66, 48, 44, 24, 70, 72, 72, 36, 48, 54, 60, 24, 78, 108, 128, 40
OFFSET
1,3
LINKS
FORMULA
a(n) = A167344(n) / A340323(n).
a(n) = A173557(n) * A327564(n).
Sum_{k=1..n} a(k) ~ c * n^2, where c = (1/2) * Product_{p prime} (1 - 3/p^2 + 2/p^4) / Product_{p prime} (1 - 2/p^2 - 1/p^3) = 0.4313799748... . - Amiram Eldar, Nov 12 2022
MATHEMATICA
f[p_, e_] := (p - 1)*(p + 1)^(e - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Nov 12 2022 *)
PROG
(PARI) A340368(n) = if(1==n, n, my(f=factor(n)); prod(i=1, #f~, (f[i, 1]-1)*((f[i, 1]+1)^(f[i, 2]-1))));
CROSSREFS
KEYWORD
nonn,mult
AUTHOR
Antti Karttunen, Jan 06 2021
STATUS
approved