login
A332154
a(n) = 5*(10^(2*n+1)-1)/9 - 10^n.
1
4, 545, 55455, 5554555, 555545555, 55555455555, 5555554555555, 555555545555555, 55555555455555555, 5555555554555555555, 555555555545555555555, 55555555555455555555555, 5555555555554555555555555, 555555555555545555555555555, 55555555555555455555555555555, 5555555555555554555555555555555
OFFSET
0,1
FORMULA
a(n) = 5*A138148(n) + 4*10^n = A002279(2n+1) - 10^n.
G.f.: (4 + 101*x - 600*x^2)/((1 - x)(1 - 10*x)(1 - 100*x)).
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3) for n > 2.
MAPLE
A332154 := n -> 5*(10^(2*n+1)-1)/9-10^n;
MATHEMATICA
Array[5 (10^(2 # + 1)-1)/9 - 10^# &, 15, 0]
PROG
(PARI) apply( {A332154(n)=10^(n*2+1)\9*5-10^n}, [0..15])
(Python) def A332154(n): return 10**(n*2+1)//9*5-10**n
CROSSREFS
Cf. A002275 (repunits R_n = (10^n-1)/9), A002279 (5*R_n), A011557 (10^n).
Cf. A138148 (cyclops numbers with binary digits), A002113 (palindromes).
Cf. A332114 .. A332194 (variants with different repeated digit 1, ..., 9).
Cf. A332150 .. A332159 (variants with different middle digit 0, ..., 9).
Sequence in context: A209608 A159367 A012770 * A202032 A267066 A159530
KEYWORD
nonn,base,easy
AUTHOR
M. F. Hasler, Feb 09 2020
STATUS
approved