login
A332156
a(n) = 5*(10^(2*n+1)-1)/9 + 10^n.
1
6, 565, 55655, 5556555, 555565555, 55555655555, 5555556555555, 555555565555555, 55555555655555555, 5555555556555555555, 555555555565555555555, 55555555555655555555555, 5555555555556555555555555, 555555555555565555555555555, 55555555555555655555555555555, 5555555555555556555555555555555
OFFSET
0,1
FORMULA
a(n) = 5*A138148(n) + 6*10^n = A002279(2n+1) + 10^n.
G.f.: (6 - 101*x - 400*x^2)/((1 - x)(1 - 10*x)(1 - 100*x)).
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3) for n > 2.
E.g.f.: exp(x)*(50*exp(99*x) + 9*exp(9*x) - 5)/9. - Stefano Spezia, Jul 13 2024
MAPLE
A332156 := n -> 5*(10^(2*n+1)-1)/9+10^n;
MATHEMATICA
Array[5 (10^(2 # + 1)-1)/9 + 10^# &, 15, 0]
PROG
(PARI) apply( {A332156(n)=10^(n*2+1)\9*5+10^n}, [0..15])
(Python) def A332156(n): return 10**(n*2+1)//9*5+10**n
CROSSREFS
Cf. A002275 (repunits R_n = (10^n-1)/9), A002279 (5*R_n), A011557 (10^n).
Cf. A138148 (cyclops numbers with binary digits), A002113 (palindromes).
Cf. A332116 .. A332196 (variants with different repeated digit 1, ..., 9).
Cf. A332150 .. A332159 (variants with different middle digit 0, ..., 9).
Sequence in context: A226263 A029590 A374360 * A291953 A225206 A268207
KEYWORD
nonn,base,easy
AUTHOR
M. F. Hasler, Feb 09 2020
STATUS
approved