login
A332151
a(n) = 5*(10^(2*n+1)-1)/9 - 4*10^n.
2
1, 515, 55155, 5551555, 555515555, 55555155555, 5555551555555, 555555515555555, 55555555155555555, 5555555551555555555, 555555555515555555555, 55555555555155555555555, 5555555555551555555555555, 555555555555515555555555555, 55555555555555155555555555555, 5555555555555551555555555555555
OFFSET
0,2
FORMULA
a(n) = 5*A138148(n) + 10^n = A002279(2n+1) - 4*10^n.
G.f.: (1 + 404*x - 900*x^2)/((1 - x)(1 - 10*x)(1 - 100*x)).
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3) for n > 2.
MAPLE
A332151 := n -> 5*(10^(2*n+1)-1)/9-4*10^n;
MATHEMATICA
Array[5 (10^(2 # + 1)-1)/9 - 4*10^# &, 15, 0]
Table[With[{c=PadRight[{}, n, 5]}, FromDigits[Join[c, {1}, c]]], {n, 0, 20}] (* Harvey P. Dale, Mar 16 2021 *)
PROG
(PARI) apply( {A332151(n)=10^(n*2+1)\9*5-4*10^n}, [0..15])
(Python) def A332151(n): return 10**(n*2+1)//9*5-4*10**n
CROSSREFS
Cf. A002275 (repunits R_n = (10^n-1)/9), A002279 (5*R_n), A011557 (10^n).
Cf. A138148 (cyclops numbers with binary digits), A002113 (palindromes).
Cf. A332121 .. A332191 (variants with different repeated digit 2, ..., 9).
Cf. A332150 .. A332159 (variants with different middle digit 0, ..., 9).
Sequence in context: A257087 A254643 A322883 * A234826 A232574 A282753
KEYWORD
nonn,base,easy
AUTHOR
M. F. Hasler, Feb 09 2020
STATUS
approved