login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A326284
G.f. A(x) satisfies: 1 = Sum_{n>=0} 4^n * ((1+x)^n - A(x))^n.
4
1, 1, 4, 104, 4196, 225216, 14845072, 1151255440, 102289538128, 10226417550096, 1135388485042624, 138583671424928128, 18446474604149746176, 2659732597343823233280, 413060592233577210697984, 68754628660531280009195776, 12213125156726936259944672320, 2306358043375070604869802287616, 461443265563759624969778550969344, 97514484569091438266511351355560448
OFFSET
0,3
COMMENTS
More generally, the following sums are equal:
(1) Sum_{n>=0} binomial(n+k-1, n) * r^n * (p + q^n)^n,
(2) Sum_{n>=0} binomial(n+k-1, n) * r^n * q^(n^2) / (1 - r*p*q^n)^(n+k),
for any fixed integer k; here, k = 1 with r = 4, p = -A(x), q = (1+x).
LINKS
FORMULA
G.f. A(x) satisfies:
(1) 1 = Sum_{n>=0} 4^n * ((1+x)^n - A(x))^n.
(2) 1 = Sum_{n>=0} 4^n * (1+x)^(n^2) / (1 + 4*(1+x)^n*A(x))^(n+1).
a(n) ~ c * (1 + 4*exp(1/r))^n * r^(2*n) * n! / sqrt(n), where r = 0.95894043087329419322124137165060249611787608513866855417024... is the root of the equation exp(1/r) * (1 + 1/(r*LambertW(-exp(-1/r)/r))) = -1/4 and c = 0.034391206985341... - Vaclav Kotesovec, Oct 13 2020
EXAMPLE
G.f.: A(x) = 1 + x + 4*x^2 + 104*x^3 + 4196*x^4 + 225216*x^5 + 14845072*x^6 + 1151255440*x^7 + 102289538128*x^8 + 10226417550096*x^9 + 1135388485042624*x^10 + ...
such that
1 = 1 + 4*((1+x) - A(x)) + 4^2*((1+x)^2 - A(x))^2 + 4^3*((1+x)^3 - A(x))^3 + 4^4*((1+x)^4 - A(x))^4 + 4^5*((1+x)^5 - A(x))^5 + 4^6*((1+x)^6 - A(x))^6 + 4^7*((1+x)^7 - A(x))^7 + ...
Also,
1 = 1/(1 + 4*A(x)) + 4*(1+x)/(1 + 4*(1+x)*A(x))^2 + 4^2*(1+x)^4/(1 + 4*(1+x)^2*A(x))^3 + 4^3*(1+x)^9/(1 + 4*(1+x)^3*A(x))^4 + 4^4*(1+x)^16/(1 + 4*(1+x)^4*A(x))^5 + 4^5*(1+x)^25/(1 + 4*(1+x)^5*A(x))^6 + 4^6*(1+x)^36/(1 + 4*(1+x)^6*A(x))^7 + ...
PROG
(PARI) {a(n) = my(A=[1]); for(i=0, n, A=concat(A, 0); A[#A] = Vec( sum(m=0, #A, 4^m*((1+x)^m - Ser(A))^m ) )[#A]/4 ); A[n+1]}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jun 22 2019
STATUS
approved