login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A326285
G.f.: Sum_{n>=0} (n+1) * x^n * (1 + x^n)^n / (1 + x^(n+1))^(n+2).
3
1, 0, 8, -6, 10, 0, 41, -64, 48, 0, 82, -84, 90, -300, 532, -284, 34, 0, 428, -892, 671, -960, 2620, -2440, 1184, -1440, 1408, -420, 618, -3024, 6788, -8274, 11022, -15120, 11602, -3456, 3470, -12288, 15448, -6560, 1342, -10080, 31803, -44788, 49980, -89400, 115312, -65976, 16190, -9792, 11836, -33084, 85334, -112840, 83666, -62064, 119486, -216504, 258898, -329880, 534492, -660184, 524614, -259320, 62010, 0, 24092, -129628, 398778, -693624, 634072, -440304, 746315, -1354080, 1668322, -1795524, 2443316, -3314808, 2935124, -1626372, 1263716, -1827840, 1815130, -949356, 308128, -549528, 1637302, -3308360, 4092178, -2817360, 1959108
OFFSET
0,3
COMMENTS
More generally, the following sums are equal:
(1) Sum_{n>=0} binomial(n+k-1,n) * (q^n + p)^n * r^n / (1 + p*q^n*r)^(n+k),
(2) Sum_{n>=0} binomial(n+k-1,n) * (q^n - p)^n * r^n / (1 - p*q^n*r)^(n+k),
for any fixed integer k; this sequence results when k=2, q = x, r = x, p = 1.
LINKS
FORMULA
G.f.: Sum_{n>=0} (n+1) * x^n * (1 + x^n)^n / (1 + x^(n+1))^(n+2).
G.f.: Sum_{n>=0} (n+1) * (-x)^n * (1 - x^n)^n / (1 - x^(n+1))^(n+2).
G.f.: Sum_{n>=0} (n+1) * x^n * Sum_{k=0..n} binomial(n,k) * (x^n - x^k)^(n-k).
G.f.: Sum_{n>=0} (n+1) * x^n * Sum_{k=0..n} binomial(n,k) * (-1)^k * (x^n + x^k)^(n-k).
G.f.: Sum_{n>=0} (n+1) * x^n * Sum_{k=0..n} binomial(n,k) * (-1)^k * Sum_{j=0..n-k} binomial(n-k,j) * x^((n-k)*(n-j)).
EXAMPLE
G.f.: A(x) = 1 + 8*x^2 - 6*x^3 + 10*x^4 + 41*x^6 - 64*x^7 + 48*x^8 + 82*x^10 - 84*x^11 + 90*x^12 - 300*x^13 + 532*x^14 - 284*x^15 + 34*x^16 + 428*x^18 - 892*x^19 + 671*x^20 - 960*x^21 + 2620*x^22 - 2440*x^23 + 1184*x^24 - 1440*x^25 + 1408*x^26 - 420*x^27 + 618*x^28 - 3024*x^29 + 6788*x^30 - 8274*x^31 + 11022*x^32 + ...
such that
A(x) = 1/(1 + x)^2 + 2*x*(1 + x)/(1 + x^2)^3 + 3*x^2*(1 + x^2)^2/(1 + x^3)^4 + 4*x^3*(1 + x^3)^3/(1 + x^4)^5 + 5*x^4*(1 + x^4)^4/(1 + x^5)^6 + 6*x^5*(1 + x^5)^5/(1 + x^6)^7 + 7*x^6*(1 + x^6)^6/(1 + x^7)^8 + 8*x^7*(1 + x^7)^7/(1 + x^8)^9 + ...
also,
A(x) = 1/(1 - x)^2 - 2*x*(1 - x)/(1 - x^2)^3 + 3*x^2*(1 - x^2)^2/(1 - x^3)^4 - 4*x^3*(1 - x^3)^3/(1 - x^4)^5 + 5*x^4*(1 - x^4)^4/(1 - x^5)^6 - 6*x^5*(1 - x^5)^5/(1 - x^6)^7 + 7*x^6*(1 - x^6)^6/(1 - x^7)^8 - 8*x^7*(1 - x^7)^7/(1 - x^8)^9 + ...
TRIANGLE FORM.
This sequence may be written as a triangle that begins
1, 0;
8, -6, 10, 0;
41, -64, 48, 0, 82, -84;
90, -300, 532, -284, 34, 0, 428, -892;
671, -960, 2620, -2440, 1184, -1440, 1408, -420, 618, -3024;
6788, -8274, 11022, -15120, 11602, -3456, 3470, -12288, 15448, -6560, 1342, -10080;
31803, -44788, 49980, -89400, 115312, -65976, 16190, -9792, 11836, -33084, 85334, -112840, 83666, -62064;
119486, -216504, 258898, -329880, 534492, -660184, 524614, -259320, 62010, 0, 24092, -129628, 398778, -693624, 634072, -440304;
746315, -1354080, 1668322, -1795524, 2443316, -3314808, 2935124, -1626372, 1263716, -1827840, 1815130, -949356, 308128, -549528, 1637302, -3308360, 4092178, -2817360; ...
in which the leftmost border (A326286) begins:
[1, 8, 41, 90, 671, 6788, 31803, 119486, 746315, 1959108, 17687917, ...].
RELATED SERIES.
Below we illustrate the following identity at specific values of x:
Sum_{n>=0} (n+1) * x^n * (1 + x^n)^n / (1 + x^(n+1))^(n+2) = Sum_{n>=0} (n+1) * (-x)^n * (1 - x^n)^n / (1 - x^(n+1))^(n+2).
(1) At x = 1/2, the following sums are equal
S1 = Sum_{n>=0} (n+1) * 4^(n+1) * (2^n + 1)^n / (2^(n+1) + 1)^(n+2),
S1 = Sum_{n>=0} (n+1) * 4^(n+1) * (2^n - 1)^n / (2^(n+1) - 1)^(n+2) * (-1)^n,
where S1 = 3.25235487864227095443984862634129135387423736948777534415428...
(2) At x = 1/3, the following sums are equal
S2 = Sum_{n>=0} (n+1) * 9^(n+1) * (3^n + 1)^n / (3^(n+1) + 1)^(n+2)
S2 = Sum_{n>=0} (n+1) * 9^(n+1) * (3^n - 1)^n / (3^(n+1) - 1)^(n+2) * (-1)^n,
where S2 = 1.825405411464020940673050144823957018856761891814066044697067...
(3) At x = 2/3, the following sums are equal
S3 = Sum_{n>=0} (n+1) * 2^n * 9^(n+1) * (3^n + 2^n)^n / (3^(n+1) + 2^(n+1))^(n+2),
S3 = Sum_{n>=0} (n+1) * 2^n * 9^(n+1) * (3^n - 2^n)^n / (3^(n+1) - 2^(n+1))^(n+2) * (-1)^n,
where S3 = 7.382803343792781402458424946145387931796609475310335027992482...
PROG
(PARI) {a(n) = my(A=sum(m=0, n, (m+1) * x^m * (1 + x^m +x*O(x^n))^m/(1 + x^(m+1) +x*O(x^n))^(m+2) )); polcoeff(A, n)}
for(n=0, 120, print1(a(n), ", "))
(PARI) {a(n) = my(A=sum(m=0, n, (m+1) * (-x)^m * (1 - x^m +x*O(x^n))^m/(1 - x^(m+1) +x*O(x^n))^(m+2) )); polcoeff(A, n)}
for(n=0, 120, print1(a(n), ", "))
CROSSREFS
Sequence in context: A249103 A116517 A302517 * A104668 A254337 A053744
KEYWORD
sign
AUTHOR
Paul D. Hanna, Jul 01 2019
STATUS
approved