login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A302733
a(n) = 4*n*(2*n-1)*a(n-1) + (4/9)*n*Product_{k=0..n} (2*k-3)^2, with a(0) = 0.
0
0, 4, 104, 6348, 714576, 128844180, 34036296120, 12392237356380, 5948858298045600, 3640849196296529700, 2767092887264215797000, 2556812689319248012075500, 2822730283098431620059222000, 3669554568237694851067285432500, 5548370007316561558557204595815000
OFFSET
0,2
LINKS
Travis Sherman, Summation of Glaisher- and Apery-like Series, University of Arizona, May 23 2000, p. 11, (3.58) - (3.62).
FORMULA
a(n-1) = (f2(n)/(2*n-1)^2)*(Product_{k=0..n-1} (2*k+1)^2), where f2(n) corresponds to the y values such that Sum_{k>=0} 2^k/(binomial(2*k,k)*(2*k+(2*n-1))) = x*Pi - y. (See examples for connection with a(n) in terms of material at Links section.)
EXAMPLE
Examples ((3.58) - (3.62)) at page 11 in Links section as follows, respectively.
For n=1, f2(1) = 0, so a(0) = 0.
For n=2, f2(2) = 4, so a(1) = 4.
For n=3, f2(3) = 104/9, so a(2) = 104.
For n=4, f2(4) = 2116/75, so a(3) = 6348.
For n=5, f2(5) = 238192/3675, so a(4) = 714576.
MATHEMATICA
RecurrenceTable[{a[n] == 4*n*(2*n-1)*a[n-1] + (4/9)*n*Product[(2*k-3)^2, {k, 0, n}], a[0] == 0}, a, {n, 0, 20}] (* Altug Alkan, Apr 12 2018 *)
nmax = 15; Table[CoefficientList[Expand[FunctionExpand[Simplify[Table[-Sum[2^j/(Binomial[2*j, j]*(2*j + (2*m - 1))), {j, 0, Infinity}]/((2*m - 1)^2/(Product[(2*k + 1)^2, {k, 0, m - 1}])), {m, 1, nmax}]]]], Pi][[n, 1]], {n, 1, nmax}] (* Vaclav Kotesovec, Apr 13 2018 *)
PROG
(PARI) a=vector(20); a[1]=4; for(n=2, #a, a[n] = 4*n*(2*n-1)*a[n-1]+(4/9)*n*prod(k=0, n, (2*k-3)^2)); concat(0, a) \\ Altug Alkan, Apr 12 2018
CROSSREFS
Cf. A302117.
Sequence in context: A356213 A303135 A326284 * A098696 A013054 A024262
KEYWORD
nonn
AUTHOR
Detlef Meya, Apr 12 2018
EXTENSIONS
More terms from Altug Alkan, Apr 12 2018
STATUS
approved