login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A356213
Number of edge covers in the n-trapezohedral graph.
2
4, 104, 1699, 23904, 317044, 4101107, 52473796, 668177568, 8490113467, 107776172264, 1367566963756, 17349734444643, 220090218116188, 2791852592070632, 35414167120396459, 449219270600324928, 5698208011194600148, 72279907017666274643, 916846410588661477204
OFFSET
1,1
COMMENTS
Sequence extended to n = 1 using the formula/recurrence.
LINKS
Eric Weisstein's World of Mathematics, Edge Cover
Eric Weisstein's World of Mathematics, Trapezohedral Graph
FORMULA
a(n) = 22*a(n-1) - 142*a(n-2) + 321*a(n-3) - 242*a(n-4) + 74*a(n-5) - 8*a(n-6) for n > 6.
G.f.: -(-2+x)*x*(2+9*x-6*x^2+2*x^3)/((1-3*x+x^2)*(1-6*x+2*x^2)*(1-13*x+4*x^2)).
MATHEMATICA
Table[LucasL[2 n] - 2 ((3 - Sqrt[7])^n + (3 + Sqrt[7])^n) + ((13 - 3 Sqrt[17])^n + (13 + 3 Sqrt[17])^n)/2^n, {n, 20}] // Expand (* Eric W. Weisstein, May 26 2024 *)
LinearRecurrence[{22, -142, 321, -242, 74, -8}, {4, 104, 1699, 23904, 317044, 4101107}, 20] (* Eric W. Weisstein, May 26 2024 *)
CoefficientList[Series[-(((-2 + x) (2 + 9 x - 6 x^2 + 2 x^3))/((1 - 3 x + x^2) (1 - 6 x + 2 x^2) (1 - 13 x + 4 x^2))), {x, 0, 20}], x] (* Eric W. Weisstein, May 26 2024 *)
CROSSREFS
Cf. A297047.
Sequence in context: A354063 A196979 A197164 * A303135 A326284 A302733
KEYWORD
nonn
AUTHOR
Eric W. Weisstein, Jul 29 2022
EXTENSIONS
a(9)-a(12) from Andrew Howroyd, Jan 27 2023
More terms from Christian Sievers, Nov 20 2023
a(1)-a(2) prepended by Eric W. Weisstein, May 26 2024
Offset updated for a(1)-a(2) by Sean A. Irvine, Aug 11 2024
STATUS
approved