login
A323872
Number of n X n aperiodic binary toroidal necklaces.
5
1, 2, 2, 54, 4050, 1342170, 1908852102, 11488774559598, 288230375950387200, 29850020237398244599296, 12676506002282260237970435130, 21970710674130840874443091905460038, 154866286100907105149455216472736043777350, 4427744605404865645682169434028029029963535277450
OFFSET
0,2
COMMENTS
The 1-dimensional (Lyndon word) case is A001037.
We define a toroidal necklace to be an equivalence class of matrices under all possible rotations of the sequence of rows and the sequence of columns. An n X k matrix is aperiodic if all n * k rotations of its sequence of rows and its sequence of columns are distinct.
LINKS
EXAMPLE
Inequivalent representatives of the a(2) = 2 aperiodic necklaces:
[0 0] [0 1]
[0 1] [1 1]
Inequivalent representatives of the a(3) = 54 aperiodic necklaces:
000 000 000 000 000 000 000 000 000
000 000 001 001 001 001 001 001 001
001 011 001 010 011 100 101 110 111
.
000 000 000 000 000 000 000 000 000
011 011 011 011 011 011 011 111 111
001 010 011 100 101 110 111 001 011
.
001 001 001 001 001 001 001 001 001
001 001 001 001 001 001 010 010 010
010 011 100 101 110 111 011 101 110
.
001 001 001 001 001 001 001 001 001
010 011 011 011 011 011 100 100 100
111 010 011 101 110 111 011 110 111
.
001 001 001 001 001 001 001 001 001
101 101 101 101 110 110 110 110 111
011 101 110 111 011 101 110 111 011
.
001 001 001 011 011 011 011 011 011
111 111 111 011 011 011 101 110 111
101 110 111 101 110 111 111 111 111
MATHEMATICA
apermatQ[m_]:=UnsameQ@@Join@@Table[RotateLeft[m, {i, j}], {i, Length[m]}, {j, Length[First[m]]}];
neckmatQ[m_]:=m==First[Union@@Table[RotateLeft[m, {i, j}], {i, Length[m]}, {j, Length[First[m]]}]];
Table[Length[Select[(Partition[#, n]&)/@Tuples[{0, 1}, n^2], And[apermatQ[#], neckmatQ[#]]&]], {n, 4}]
KEYWORD
nonn
AUTHOR
Gus Wiseman, Feb 04 2019
EXTENSIONS
Terms a(5) and beyond from Andrew Howroyd, Aug 21 2019
STATUS
approved