login
A323873
Irregular triangle of 11^k mod prime(n).
2
1, 1, 2, 1, 1, 4, 2, 0, 1, 11, 4, 5, 3, 7, 12, 2, 9, 8, 10, 6, 1, 11, 2, 5, 4, 10, 8, 3, 16, 6, 15, 12, 13, 7, 9, 14, 1, 11, 7, 1, 11, 6, 20, 13, 5, 9, 7, 8, 19, 2, 22, 12, 17, 3, 10, 18, 14, 16, 15, 4, 21, 1, 11, 5, 26, 25, 14, 9, 12, 16, 2, 22, 10, 23, 21, 28
OFFSET
1,3
COMMENTS
Length of the n-th row (n != 5) is the order of 11 modulo the n-th prime.
Except for the fifth row, the first term of each row is 1.
LINKS
EXAMPLE
The first 9 rows are:
1;
1, 2;
1;
1, 4, 2;
0;
1, 11, 4, 5, 3, 7, 12, 2, 9, 8, 10, 6;
1, 11, 2, 5, 4, 10, 8, 3, 16, 6, 15, 12, 13, 7, 9, 14;
1, 11, 7;
1, 11, 6, 20, 13, 5, 9, 7, 8, 19, 2, 22, 12, 17, 3, 10, 18, 14, 16, 15, 4, 21;
...
MAPLE
T:= n-> (p-> `if`(p=11, 0, seq(11&^k mod p,
k=0..numtheory[order](11, p)-1)))(ithprime(n)):
seq(T(n), n=1..15); # Alois P. Heinz, Feb 06 2019
MATHEMATICA
Table[If[p == 11, {0}, Array[PowerMod[11, #, p] &, MultiplicativeOrder[11, p], 0]], {p, Prime@ Range@ 10}] (* Michael De Vlieger, Feb 25 2019 *)
PROG
(GAP) A000040:=Filtered([1..350], IsPrime);; p:=5;;
R:=List([1..Length(A000040)], n->OrderMod(A000040[p], A000040[n]));;
a1:=List([1..p-1], n->List([0..R[n]-1], k->PowerMod(A000040[p], k, A000040[n])));;
a:=Flat(Concatenation(a1, [0], List([p+1..2*p], n->List([0..R[n]-1], k->PowerMod(A000040[p], k, A000040[n])))));; Print(a);
CROSSREFS
Cf. A201908 (2^k), A201909 (3^k), A201910 (5^k), A201911 (7^k), this sequence (11^k), A323874 (13^k).
Cf. A000040.
Sequence in context: A124939 A187800 A340189 * A365582 A367559 A099020
KEYWORD
nonn,tabf
AUTHOR
Muniru A Asiru, Feb 04 2019
STATUS
approved