login
A323866
Number of aperiodic toroidal necklaces of positive integers summing to n.
10
1, 1, 1, 3, 5, 12, 18, 42, 72, 145, 262, 522, 960, 1879, 3531, 6831, 13013, 25148, 48177, 93186, 179507, 347509, 671955, 1303257, 2527162, 4910681, 9545176, 18579471, 36183505, 70540861, 137603801, 268655547, 524842088, 1026067205, 2007118657, 3928564113
OFFSET
0,4
COMMENTS
The 1-dimensional (Lyndon word) case is A059966.
We define a toroidal necklace to be an equivalence class of matrices under all possible rotations of the sequence of rows and the sequence of columns. An n X k matrix is aperiodic if all n * k rotations of its sequence of rows and its sequence of columns are distinct.
LINKS
S. N. Ethier, Counting toroidal binary arrays, J. Int. Seq. 16 (2013) #13.4.7.
EXAMPLE
Inequivalent representatives of the a(6) = 18 toroidal necklaces:
[6] [1 5] [2 4] [1 1 4] [1 2 3] [1 3 2] [1 1 1 3] [1 1 2 2] [1 1 1 1 2]
.
[1] [2] [1 1]
[5] [4] [1 3]
.
[1] [1] [1]
[1] [2] [3]
[4] [3] [2]
.
[1] [1]
[1] [1]
[1] [2]
[3] [2]
.
[1]
[1]
[1]
[1]
[2]
MATHEMATICA
primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
facs[n_]:=If[n<=1, {{}}, Join@@Table[Map[Prepend[#, d]&, Select[facs[n/d], Min@@#>=d&]], {d, Rest[Divisors[n]]}]];
ptnmats[n_]:=Union@@Permutations/@Select[Union@@(Tuples[Permutations/@#]&/@Map[primeMS, facs[n], {2}]), SameQ@@Length/@#&];
apermatQ[m_]:=UnsameQ@@Join@@Table[RotateLeft[m, {i, j}], {i, Length[m]}, {j, Length[First[m]]}];
neckmatQ[m_]:=m==First[Union@@Table[RotateLeft[m, {i, j}], {i, Length[m]}, {j, Length[First[m]]}]];
Table[If[n==0, 1, Length[Union@@Table[Select[ptnmats[k], And[apermatQ[#], neckmatQ[#]]&], {k, Times@@Prime/@#&/@IntegerPartitions[n]}]]], {n, 0, 10}]
PROG
(GAP) List([0..30], A323866); # See A323861 for code; Andrew Howroyd, Aug 21 2019
KEYWORD
nonn
AUTHOR
Gus Wiseman, Feb 04 2019
EXTENSIONS
Terms a(16) and beyond from Andrew Howroyd, Aug 21 2019
STATUS
approved