login
A323865
Number of aperiodic binary toroidal necklaces of size n.
14
1, 2, 2, 4, 8, 12, 36, 36, 114, 166, 396, 372, 1992, 1260, 4644, 8728, 20310, 15420, 87174, 55188, 314064, 399432, 762228, 729444, 5589620, 4026522, 10323180, 19883920, 57516048, 37025580, 286322136, 138547332, 805277760, 1041203944, 2021145660, 3926827224
OFFSET
0,2
COMMENTS
We define a toroidal necklace to be an equivalence class of matrices under all possible rotations of the sequence of rows and the sequence of columns. An n X k matrix is aperiodic if all n * k rotations of its sequence of rows and its sequence of columns are distinct.
LINKS
S. N. Ethier, Counting toroidal binary arrays, J. Int. Seq. 16 (2013) #13.4.7.
FORMULA
a(n) = Sum_{d|n} A323861(d, n/d) for n > 0. - Andrew Howroyd, Aug 21 2019
EXAMPLE
Inequivalent representatives of the a(6) = 36 aperiodic necklaces:
000001 000011 000101 000111 001011 001101 001111 010111 011111
.
000 000 001 001 001 001 001 011 011
001 011 010 011 101 110 111 101 111
.
00 00 00 00 00 01 01 01 01
00 01 01 01 11 01 01 10 11
01 01 10 11 01 10 11 11 11
.
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1
0 0 0 0 1 1 1 0 1
0 0 1 1 0 1 1 1 1
0 1 0 1 1 0 1 1 1
1 1 1 1 1 1 1 1 1
MATHEMATICA
apermatQ[m_]:=UnsameQ@@Join@@Table[RotateLeft[m, {i, j}], {i, Length[m]}, {j, Length[First[m]]}];
neckmatQ[m_]:=m==First[Union@@Table[RotateLeft[m, {i, j}], {i, Length[m]}, {j, Length[First[m]]}]];
zaz[n_]:=Join@@(Table[Partition[#, d], {d, Divisors[n]}]&/@Tuples[{0, 1}, n]);
Table[If[n==0, 1, Length[Union[First/@matcyc/@Select[zaz[n], And[apermatQ[#], neckmatQ[#]]&]]]], {n, 0, 10}]
KEYWORD
nonn
AUTHOR
Gus Wiseman, Feb 04 2019
EXTENSIONS
Terms a(19) and beyond from Andrew Howroyd, Aug 21 2019
STATUS
approved