OFFSET
1,12
COMMENTS
The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
The augmented monomial symmetric functions are given by M(y) = c(y) * m(y) where c(y) = Product_i (y)_i! where (y)_i is the number of i's in y and m is monomial symmetric functions.
LINKS
EXAMPLE
Tetrangle begins (zeros not shown):
(1): 1
.
(2): 1
(11): -1 1
.
(3): 1
(21): -1 1
(111): 2 -3 1
.
(4): 1
(22): -1 1
(31): -1 1
(211): 2 -1 -2 1
(1111): -6 3 8 -6 1
.
(5): 1
(41): -1 1
(32): -1 1
(221): 2 -1 -2 1
(311): 2 -2 -1 1
(2111): -6 6 5 -3 -3 1
(11111): 24 30 20 15 20 10 1
For example, row 14 gives: M(32) = -p(5) + p(32).
CROSSREFS
KEYWORD
sign,tabf
AUTHOR
Gus Wiseman, Nov 23 2018
STATUS
approved