login
A124794
Coefficients of incomplete Bell polynomials in the prime factorization order.
66
1, 1, 1, 1, 1, 3, 1, 1, 3, 4, 1, 6, 1, 5, 10, 1, 1, 15, 1, 10, 15, 6, 1, 10, 10, 7, 15, 15, 1, 60, 1, 1, 21, 8, 35, 45, 1, 9, 28, 20, 1, 105, 1, 21, 105, 10, 1, 15, 35, 70, 36, 28, 1, 105, 56, 35, 45, 11, 1, 210, 1, 12, 210, 1, 84, 168, 1, 36, 55, 280, 1, 105, 1, 13, 280, 45, 126, 252, 1
OFFSET
1,6
COMMENTS
Coefficients of (D^k f)(g(t))*(D g(t))^k1*(D^2 g(t))^k2*... in the Faa di Bruno formula for D^m(f(g(t))) where k = k1 + k2 + ..., m = 1*k1 + 2*k2 + ....
Number of set partitions whose block sizes are the prime indices of n (i.e., the integer partition with Heinz number n). - Gus Wiseman, Sep 12 2018
LINKS
Eric Weisstein's World of Mathematics, Bell Polynomial
Eric Weisstein's World of Mathematics, FaĆ  di Bruno's Formula
FORMULA
For n = p1^k1*p2^k2*... where 2 = p1 < p2 < ... are the sequence of all primes, a(n) = a([k1,k2,...]) = (k1+2*k2+...)!/((k1!*k2!*...)*(1!^k1*2!^k2*...)).
a(2*prime(n)) = n + 1, for n > 1. See A065475. - Bill McEachen, Oct 11 2023
EXAMPLE
The a(6) = 3 set partitions of type (2,1) are {{1},{2,3}}, {{1,3},{2}}, {{1,2},{3}}. - Gus Wiseman, Sep 12 2018
MAPLE
with(numtheory):
a:= n-> (l-> add(i*l[i], i=1..nops(l))!/mul(l[i]!*i!^l[i],
i=1..nops(l)))([seq(padic[ordp](n, ithprime(i)),
i=1..pi(max(1, factorset(n))))]):
seq(a(n), n=1..100); # Alois P. Heinz, Feb 14 2020
MATHEMATICA
numSetPtnsOfType[ptn_]:=Total[ptn]!/Times@@Factorial/@ptn/Times@@Factorial/@Length/@Split[ptn];
Table[numSetPtnsOfType[If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]]], {n, 100}] (* Gus Wiseman, Sep 12 2018 *)
PROG
(PARI) a(n) = my(f=factor(n)); sum(k=1, #f~, primepi(f[k, 1])*f[k, 2])!/(prod(k=1, #f~, f[k, 2]!)*prod(k=1, #f~, primepi(f[k, 1])!^f[k, 2])); \\ Michel Marcus, Oct 11 2023
KEYWORD
nonn
AUTHOR
Max Alekseyev, Nov 07 2006
STATUS
approved