login
A321895
Irregular triangle read by rows where T(H(u),H(v)) is the coefficient of p(v) in M(u), where H is Heinz number, M is augmented monomial symmetric functions, and p is power sum symmetric functions.
12
1, 1, 1, 0, -1, 1, 1, 0, 0, -1, 1, 0, 1, 0, 0, 0, 0, 2, -3, 1, -1, 1, 0, 0, 0, -1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 2, -1, -2, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, -1, 0, 1, 0, 0, 0, 0, -6, 3, 8, -6, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
OFFSET
1,18
COMMENTS
Row n has length A000041(A056239(n)).
The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
The augmented monomial symmetric functions are given by M(y) = c(y) * m(y) where c(y) = Product_i (y)_i! where (y)_i is the number of i's in y and m is monomial symmetric functions.
EXAMPLE
Triangle begins:
1
1
1 0
-1 1
1 0 0
-1 1 0
1 0 0 0 0
2 -3 1
-1 1 0 0 0
-1 0 1 0 0
1 0 0 0 0 0 0
2 -1 -2 1 0
1 0 0 0 0 0 0 0 0 0 0
-1 1 0 0 0 0 0
-1 0 1 0 0 0 0
-6 3 8 -6 1
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 -1 -2 1 0 0 0
For example, row 12 gives: M(211) = 2p(4) - p(22) - 2p(31) + p(211).
MATHEMATICA
primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
sps[{}]:={{}}; sps[set:{i_, ___}]:=Join@@Function[s, Prepend[#, s]&/@sps[Complement[set, s]]]/@Cases[Subsets[set], {i, ___}];
Table[Sum[Product[(-1)^(Length[t]-1)*(Length[t]-1)!, {t, s}], {s, Select[sps[Range[PrimeOmega[n]]]/.Table[i->If[n==1, {}, primeMS[n]][[i]], {i, PrimeOmega[n]}], Times@@Prime/@Total/@#==m&]}], {n, 18}, {m, Sort[Times@@Prime/@#&/@IntegerPartitions[Total[primeMS[n]]]]}]
KEYWORD
sign,tabf
AUTHOR
Gus Wiseman, Nov 20 2018
STATUS
approved