# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a321931 Showing 1-1 of 1 %I A321931 #6 Nov 23 2018 21:13:35 %S A321931 1,1,0,-1,1,1,0,0,-1,1,0,2,-3,1,1,0,0,0,0,-1,1,0,0,0,-1,0,1,0,0,2,-1, %T A321931 -2,1,0,-6,3,8,-6,1,1,0,0,0,0,0,0,-1,1,0,0,0,0,0,-1,0,1,0,0,0,0,2,-1, %U A321931 -2,1,0,0,0,2,-2,-1,0,1,0,0,-6,6,5,-3,-3,1,0 %N A321931 Tetrangle where T(n,H(u),H(v)) is the coefficient of p(v) in M(u), where u and v are integer partitions of n, H is Heinz number, p is power sum symmetric functions, and M is augmented monomial symmetric functions. %C A321931 The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k). %C A321931 The augmented monomial symmetric functions are given by M(y) = c(y) * m(y) where c(y) = Product_i (y)_i! where (y)_i is the number of i's in y and m is monomial symmetric functions. %H A321931 Wikipedia, Symmetric polynomial %e A321931 Tetrangle begins (zeros not shown): %e A321931 (1): 1 %e A321931 . %e A321931 (2): 1 %e A321931 (11): -1 1 %e A321931 . %e A321931 (3): 1 %e A321931 (21): -1 1 %e A321931 (111): 2 -3 1 %e A321931 . %e A321931 (4): 1 %e A321931 (22): -1 1 %e A321931 (31): -1 1 %e A321931 (211): 2 -1 -2 1 %e A321931 (1111): -6 3 8 -6 1 %e A321931 . %e A321931 (5): 1 %e A321931 (41): -1 1 %e A321931 (32): -1 1 %e A321931 (221): 2 -1 -2 1 %e A321931 (311): 2 -2 -1 1 %e A321931 (2111): -6 6 5 -3 -3 1 %e A321931 (11111): 24 30 20 15 20 10 1 %e A321931 For example, row 14 gives: M(32) = -p(5) + p(32). %Y A321931 Row sums are A155972. This is a regrouping of the triangle A321895. %Y A321931 Cf. A008480, A056239, A124794, A124795, A215366, A318284, A318360, A319191, A319193, A321912-A321935. %K A321931 sign,tabf %O A321931 1,12 %A A321931 _Gus Wiseman_, Nov 23 2018 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE