login
A321756
Irregular triangle read by rows where T(H(u),H(v)) is the coefficient of s(v) in e(u), where H is Heinz number, e is elementary symmetric functions, and s is Schur functions.
2
1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 2, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 2, 3, 3, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
OFFSET
1,19
COMMENTS
Row n has length A000041(A056239(n)).
The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
EXAMPLE
Triangle begins:
1
1
0 1
1 1
0 0 1
0 1 1
0 0 0 0 1
1 2 1
0 1 0 1 1
0 0 0 1 1
0 0 0 0 0 0 1
0 1 1 2 1
0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 1 1
0 0 0 1 0 1 1
1 2 3 3 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 1 2 1 2 1
For example, row 18 gives: e(221) = s(32) + 2s(221) + s(311) + 2s(2111) + s(11111).
KEYWORD
nonn,tabf
AUTHOR
Gus Wiseman, Nov 20 2018
STATUS
approved