# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a321756 Showing 1-1 of 1 %I A321756 #4 Nov 20 2018 16:31:16 %S A321756 1,1,0,1,1,1,0,0,1,0,1,1,0,0,0,0,1,1,2,1,0,1,0,1,1,0,0,0,1,1,0,0,0,0, %T A321756 0,0,1,0,1,1,2,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,1,0,0,0,1,0,1,1,1, %U A321756 2,3,3,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1 %N A321756 Irregular triangle read by rows where T(H(u),H(v)) is the coefficient of s(v) in e(u), where H is Heinz number, e is elementary symmetric functions, and s is Schur functions. %C A321756 Row n has length A000041(A056239(n)). %C A321756 The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k). %H A321756 Wikipedia, Symmetric polynomial %e A321756 Triangle begins: %e A321756 1 %e A321756 1 %e A321756 0 1 %e A321756 1 1 %e A321756 0 0 1 %e A321756 0 1 1 %e A321756 0 0 0 0 1 %e A321756 1 2 1 %e A321756 0 1 0 1 1 %e A321756 0 0 0 1 1 %e A321756 0 0 0 0 0 0 1 %e A321756 0 1 1 2 1 %e A321756 0 0 0 0 0 0 0 0 0 0 1 %e A321756 0 0 0 0 0 1 1 %e A321756 0 0 0 1 0 1 1 %e A321756 1 2 3 3 1 %e A321756 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 %e A321756 0 0 1 2 1 2 1 %e A321756 For example, row 18 gives: e(221) = s(32) + 2s(221) + s(311) + 2s(2111) + s(11111). %Y A321756 Row sums are A321757. %Y A321756 Cf. A000085, A008480, A056239, A082733, A124795, A153452, A296188, A300121, A304438, A317552, A317554, A319225, A319226, A321742-A321765. %K A321756 nonn,tabf %O A321756 1,19 %A A321756 _Gus Wiseman_, Nov 20 2018 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE