OFFSET
1,2
COMMENTS
A refinement of A135278, up the sign these are the coefficients appearing in the expansion of power-sum symmetric functions in terms of elementary or homogeneous symmetric functions.
LINKS
Gus Wiseman, Enumeration of paths and cycles and e-coefficients of incomparability graphs, arXiv:0709.0430 [math.CO], 2007.
EXAMPLE
Triangle begins:
1
2 1
3 3 1
4 2 4 4 1
5 5 5 5 5 5 1
6 6 6 3 2 6 12 9 6 6 1
The fourth row corresponds to the symmetric function identities:
p(4) = -4 e(4) + 2 e(22) + 4 e(31) - 4 e(211) + e(1111)
p(4) = 4 h(4) - 2 h(22) - 4 h(31) + 4 h(211) - h(1111).
MATHEMATICA
primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]], 2], And[OrderedQ[#], UnsameQ@@#, Length[Intersection@@s[[#]]]>0]&]}, If[c=={}, s, csm[Union[Append[Delete[s, List/@c[[1]]], Union@@s[[c[[1]]]]]]]]];
Table[Length[Select[Subsets[Partition[Range[n], 2, 1, 1], {n-PrimeOmega[m]}], Sort[Length/@csm[Union[#, List/@Range[n]]]]==primeMS[m]&]], {n, 6}, {m, Sort[Times@@Prime/@#&/@IntegerPartitions[n]]}]
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Gus Wiseman, Sep 13 2018
STATUS
approved