login
A319226
Irregular triangle where T(n,k) is the number of acyclic spanning subgraphs of a cycle graph, where the sizes of the connected components are given by the integer partition with Heinz number A215366(n,k).
14
1, 2, 1, 3, 3, 1, 4, 2, 4, 4, 1, 5, 5, 5, 5, 5, 5, 1, 6, 6, 6, 3, 2, 6, 12, 9, 6, 6, 1, 7, 7, 7, 7, 14, 7, 7, 7, 7, 7, 21, 14, 7, 7, 1, 8, 8, 8, 4, 8, 8, 8, 16, 16, 8, 2, 24, 8, 24, 12, 16, 8, 32, 20, 8, 8, 1, 9, 9, 9, 9, 9, 9, 18, 9, 9, 9, 18, 18, 3, 27, 27
OFFSET
1,2
COMMENTS
A refinement of A135278, up the sign these are the coefficients appearing in the expansion of power-sum symmetric functions in terms of elementary or homogeneous symmetric functions.
EXAMPLE
Triangle begins:
1
2 1
3 3 1
4 2 4 4 1
5 5 5 5 5 5 1
6 6 6 3 2 6 12 9 6 6 1
The fourth row corresponds to the symmetric function identities:
p(4) = -4 e(4) + 2 e(22) + 4 e(31) - 4 e(211) + e(1111)
p(4) = 4 h(4) - 2 h(22) - 4 h(31) + 4 h(211) - h(1111).
MATHEMATICA
primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]], 2], And[OrderedQ[#], UnsameQ@@#, Length[Intersection@@s[[#]]]>0]&]}, If[c=={}, s, csm[Union[Append[Delete[s, List/@c[[1]]], Union@@s[[c[[1]]]]]]]]];
Table[Length[Select[Subsets[Partition[Range[n], 2, 1, 1], {n-PrimeOmega[m]}], Sort[Length/@csm[Union[#, List/@Range[n]]]]==primeMS[m]&]], {n, 6}, {m, Sort[Times@@Prime/@#&/@IntegerPartitions[n]]}]
CROSSREFS
Signed versions with different row-orderings are A115131, A210258, A263916.
Sequence in context: A277227 A054531 A324602 * A307449 A368748 A207645
KEYWORD
nonn,tabf
AUTHOR
Gus Wiseman, Sep 13 2018
STATUS
approved