login
A321754
Irregular triangle read by rows where T(H(u),H(v)) is the coefficient of h(v) in p(u), where H is Heinz number, p is power sum symmetric functions, and h is homogeneous symmetric functions.
3
1, 1, 2, -1, 0, 1, 3, -3, 1, 0, 2, -1, 4, -2, -4, 4, -1, 0, 0, 1, 0, 4, 0, -4, 1, 0, 0, 3, -3, 1, 5, -5, -5, 5, 5, -5, 1, 0, 0, 0, 2, -1, 6, -6, -6, -3, 2, 6, 12, -9, -6, 6, -1, 0, 4, 0, -2, -4, 4, -1, 0, 0, 6, -6, -3, 5, -1, 0, 0, 0, 0, 1, 7, -7, -7, -7, 14
OFFSET
1,3
COMMENTS
Row n has length A000041(A056239(n)).
The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
Up to sign, same as A321752.
EXAMPLE
Triangle begins:
1
1
2 -1
0 1
3 -3 1
0 2 -1
4 -2 -4 4 -1
0 0 1
0 4 0 -4 1
0 0 3 -3 1
5 -5 -5 5 5 -5 1
0 0 0 2 -1
6 -6 -6 -3 2 6 12 -9 -6 6 -1
0 4 0 -2 -4 4 -1
0 0 6 -6 -3 5 -1
0 0 0 0 1
7 -7 -7 -7 14 7 7 7 -7 -7 -21 14 7 -7 1
0 0 0 4 0 -4 1
For example, row 15 gives: p(32) = 6h(32) - 6h(221) - 3h(311) + 5h(2111) - h(11111).
CROSSREFS
Row sums are all equal to 1.
Sequence in context: A353279 A321919 A321918 * A321752 A349839 A247919
KEYWORD
sign,tabf
AUTHOR
Gus Wiseman, Nov 20 2018
STATUS
approved