login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A309423
Numbers k with property that there is an m = m(k) such that m(m+1)/2 divides k(k+1)/2 and m(k) > m(i) for all i < k.
0
2, 3, 8, 9, 14, 20, 35, 77, 84, 99, 119, 231, 260, 351, 494, 696, 1665, 1785, 1845, 3479, 4059, 6887, 16302, 17919, 23183, 23660, 56979, 58800, 81968, 83880, 95930, 137903, 340955, 358017, 574925, 803760, 1336139, 3375111, 4684659, 10316619, 14935095, 18610022
OFFSET
1,1
COMMENTS
gcd(a(n),m(n)) < m(n), n > 1.
Let k = r * m, and r = (A000217(k) * (m+1))/((A000217(m) * (k+1)). For known terms 1 < r < 4.
EXAMPLE
2 is a term because A000217(1) divides A000217(2).
3 is a term because A000217(2) divides A000217(3).
8 is a term because A000217(3) divides A000217(8).
9 is a term because A000217(5) divides A000217(9).
14 is a term because A000217(6) divides A000217(14).
MATHEMATICA
m=1; L={2}; k=2; While[k < 10000, k++; tr = k (k + 1)/2; t = SelectFirst[ Reverse@ Divisors[2 tr], # != k && Mod[tr, # (# + 1)/2] == 0 &]; If[t > m, AppendTo[L, k]; m = t]]; L (* Giovanni Resta, Sep 05 2019 *)
PROG
(PARI) T(n) = {return((n * (n+1)) / 2)}
Tk(n, k) = {for (i = k, n - 1, if ((T(n)%T(i))==0, return(i+1)))}
Tn(n) = {phwm = 1; for (i = 2, n, nhwm = Tk(i, phwm); if(nhwm > phwm, phwm = nhwm; print1(i, ", ")))}
Tn(5000000)
CROSSREFS
Cf. A000217.
Sequence in context: A047243 A277094 A099148 * A029787 A246396 A054462
KEYWORD
nonn
AUTHOR
Torlach Rush, Jul 30 2019
EXTENSIONS
More terms from Giovanni Resta, Sep 05 2019
STATUS
approved