login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A309426
Number of prime parts in the partitions of n into 4 parts.
0
0, 0, 0, 0, 0, 1, 3, 5, 11, 12, 19, 23, 32, 36, 47, 53, 68, 77, 92, 103, 123, 134, 157, 173, 197, 216, 245, 265, 299, 323, 357, 385, 425, 454, 499, 534, 580, 619, 671, 711, 770, 816, 875, 926, 993, 1044, 1116, 1175, 1249, 1314, 1396, 1462, 1552, 1625, 1714
OFFSET
0,7
FORMULA
a(n) = Sum_{k=1..floor(n/4)} Sum_{j=k..floor((n-k)/3)} Sum_{i=j..floor((n-j-k)/2)} (A010051(i) + A010051(j) + A010051(k) + A010051(n-i-j-k)).
EXAMPLE
Figure 1: The partitions of n into 4 parts for n = 8, 9, ..
1+1+1+9
1+1+2+8
1+1+3+7
1+1+4+6
1+1+1+8 1+1+5+5
1+1+2+7 1+2+2+7
1+1+1+7 1+1+3+6 1+2+3+6
1+1+2+6 1+1+4+5 1+2+4+5
1+1+3+5 1+2+2+6 1+3+3+5
1+1+1+6 1+1+4+4 1+2+3+5 1+3+4+4
1+1+1+5 1+1+2+5 1+2+2+5 1+2+4+4 2+2+2+6
1+1+2+4 1+1+3+4 1+2+3+4 1+3+3+4 2+2+3+5
1+1+3+3 1+2+2+4 1+3+3+3 2+2+2+5 2+2+4+4
1+2+2+3 1+2+3+3 2+2+2+4 2+2+3+4 2+3+3+4
2+2+2+2 2+2+2+3 2+2+3+3 2+3+3+3 3+3+3+3
--------------------------------------------------------------------------
n | 8 9 10 11 12 ...
--------------------------------------------------------------------------
a(n) | 11 12 19 23 32 ...
--------------------------------------------------------------------------
- Wesley Ivan Hurt, Sep 08 2019
MATHEMATICA
Table[Sum[Sum[Sum[(PrimePi[i] - PrimePi[i - 1]) + (PrimePi[j] - PrimePi[j - 1]) + (PrimePi[k] - PrimePi[k - 1]) + (PrimePi[n - i - j - k] - PrimePi[n - i - j - k - 1]), {i, j, Floor[(n - j - k)/2]}], {j, k, Floor[(n - k)/3]}], {k, Floor[n/4]}], {n, 0, 50}]
Table[Count[Flatten[IntegerPartitions[n, {4}]], _?PrimeQ], {n, 0, 60}] (* Harvey P. Dale, Oct 04 2019 *)
CROSSREFS
Sequence in context: A066281 A072063 A242269 * A115398 A014597 A357369
KEYWORD
nonn
AUTHOR
Wesley Ivan Hurt, Aug 01 2019
STATUS
approved