login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers k with property that there is an m = m(k) such that m(m+1)/2 divides k(k+1)/2 and m(k) > m(i) for all i < k.
0

%I #32 Sep 05 2019 08:45:28

%S 2,3,8,9,14,20,35,77,84,99,119,231,260,351,494,696,1665,1785,1845,

%T 3479,4059,6887,16302,17919,23183,23660,56979,58800,81968,83880,95930,

%U 137903,340955,358017,574925,803760,1336139,3375111,4684659,10316619,14935095,18610022

%N Numbers k with property that there is an m = m(k) such that m(m+1)/2 divides k(k+1)/2 and m(k) > m(i) for all i < k.

%C gcd(a(n),m(n)) < m(n), n > 1.

%C Let k = r * m, and r = (A000217(k) * (m+1))/((A000217(m) * (k+1)). For known terms 1 < r < 4.

%e 2 is a term because A000217(1) divides A000217(2).

%e 3 is a term because A000217(2) divides A000217(3).

%e 8 is a term because A000217(3) divides A000217(8).

%e 9 is a term because A000217(5) divides A000217(9).

%e 14 is a term because A000217(6) divides A000217(14).

%t m=1; L={2}; k=2; While[k < 10000, k++; tr = k (k + 1)/2; t = SelectFirst[ Reverse@ Divisors[2 tr], # != k && Mod[tr, # (# + 1)/2] == 0 &]; If[t > m, AppendTo[L, k]; m = t]]; L (* _Giovanni Resta_, Sep 05 2019 *)

%o (PARI) T(n) = {return((n * (n+1)) / 2)}

%o Tk(n, k) = {for (i = k, n - 1, if ((T(n)%T(i))==0, return(i+1)))}

%o Tn(n) = {phwm = 1;for (i = 2, n, nhwm = Tk(i, phwm); if(nhwm > phwm, phwm = nhwm; print1(i, ",")))}

%o Tn(5000000)

%Y Cf. A000217.

%K nonn

%O 1,1

%A _Torlach Rush_, Jul 30 2019

%E More terms from _Giovanni Resta_, Sep 05 2019