login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A277094
Numbers k such that sin(k) > 0 and sin(k+2) < 0.
4
2, 3, 8, 9, 14, 15, 20, 21, 27, 28, 33, 34, 39, 40, 46, 47, 52, 53, 58, 59, 64, 65, 71, 72, 77, 78, 83, 84, 90, 91, 96, 97, 102, 103, 108, 109, 115, 116, 121, 122, 127, 128, 134, 135, 140, 141, 146, 147, 152, 153, 159, 160, 165, 166, 171, 172, 178, 179, 184
OFFSET
1,1
COMMENTS
Guide to related sequences (a four-way splitting of the natural numbers):
A277093: sin(k) > 0 and sin(k+2) > 0
A277094: sin(k) > 0 and sin(k+2) < 0
A277095: sin(k) < 0 and sin(k+2) > 0
A277096: sin(k) < 0 and sin(k+2) < 0
LINKS
FORMULA
a(n) ~ Pi*n by the equidistribution theorem. - Charles R Greathouse IV, Oct 01 2016
MATHEMATICA
z = 400; f[x_] := Sin[x];
Select[Range[z], f[#] > 0 && f[# + 2] > 0 &] (* A277093 *)
Select[Range[z], f[#] > 0 && f[# + 2] < 0 &] (* A277094 *)
Select[Range[z], f[#] < 0 && f[# + 2] > 0 &] (* A277095 *)
Select[Range[z], f[#] < 0 && f[# + 2] < 0 &] (* A277096 *)
Position[Partition[Sin[Range[200]], 3, 1], _?(#[[1]]>0&&#[[3]]<0&), 1, Heads-> False]// Flatten (* Harvey P. Dale, Sep 04 2022 *)
PROG
(PARI) is(n)=my(x=frac(n/(2*Pi))); 1/2-1/Pi<x && x<1/2 \\ Charles R Greathouse IV, Oct 01 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Oct 01 2016
STATUS
approved