login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A303564
Number T(n,k) of derangements of [n] having exactly k peaks; triangle T(n,k), n>=0, 0<=k<=max(0,floor((n-1)/2)), read by rows.
3
1, 0, 1, 1, 1, 3, 6, 5, 33, 6, 11, 152, 102, 21, 663, 1068, 102, 43, 2778, 9060, 2952, 85, 11413, 68250, 50796, 2952, 171, 46332, 477978, 679368, 131112, 341, 186867, 3192192, 7824834, 3349224, 131112, 683, 750878, 20648088, 81751824, 64791576, 8271792
OFFSET
0,6
LINKS
Wikipedia, Derangement
FORMULA
T(2*n+1,n) = A129815(2*n+1) = A129817(2*n+1) = A162979(2*n+1,0) = A162980(2*n+1,0).
EXAMPLE
T(5,0) = 5: 51234, 53124, 53214, 54123, 54213.
T(5,1) = 33: 21453, 21534, 23451, 23514, 24513, 24531, 25134, 25413, 25431, 31254, 31452, 31524, 34512, 34521, 35124, 35214, 35412, 35421, 41253, 41523, 41532, 43152, 43251, 43512, 43521, 45123, 45213, 51423, 51432, 53412, 53421, 54132, 54231.
T(5,2) = 6: 23154, 24153, 34152, 34251, 45132, 45231.
Triangle T(n,k) begins:
1;
0;
1;
1, 1;
3, 6;
5, 33, 6;
11, 152, 102;
21, 663, 1068, 102;
43, 2778, 9060, 2952;
85, 11413, 68250, 50796, 2952;
171, 46332, 477978, 679368, 131112;
341, 186867, 3192192, 7824834, 3349224, 131112;
683, 750878, 20648088, 81751824, 64791576, 8271792;
MAPLE
b:= proc(s, i, j) option remember; expand(`if`(s={}, 1, add(
`if`(k=nops(s), 0, b(s minus {k}, `if`(j>k, 0, j), k)*
`if`(i>0 and j>0 and i<j and j>k, x, 1)), k=s)))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..max(0, degree(p))))(b({$1..n}, 0$2)):
seq(T(n), n=0..12);
MATHEMATICA
b[s_, i_, j_] := b[s, i, j] = Expand[If[s == {}, 1, Sum[If[k == Length[s], 0, b[s ~Complement~ {k}, If[j > k, 0, j], k]*If[i > 0 && j > 0 && i < j && j > k, x, 1]], {k, s}]]];
T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, Max[0, Exponent[p, x]]}]][b[Range[n], 0, 0]];
Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, May 31 2018, from Maple *)
CROSSREFS
Columns k=0-1 give: A001045(n-1) for n>0, A301272.
Row sums give A000166.
Cf. A008303 (the same for permutations), A004526, A129815, A129817, A162979, A162980, A216963, A303648 (the same for involutions).
Sequence in context: A199126 A247569 A115389 * A121867 A307132 A300673
KEYWORD
nonn,tabf
AUTHOR
Alois P. Heinz, Apr 26 2018
STATUS
approved