login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A129817
Number of alternating fixed-point-free permutations on n letters.
4
1, 0, 1, 1, 2, 6, 24, 102, 528, 2952, 19008, 131112, 1009728, 8271792, 74167488, 703077552, 7194754368, 77437418112, 890643066048, 10726837356672, 136988469649728, 1825110309733632, 25625477737660608, 374159217291201792, 5728724202727533888, 90961591766739121152, 1508303564683904357568, 25874345243221479539712, 461932949559928514787648, 8513674175717969079785472, 162818666826944872460200128
OFFSET
0,5
COMMENTS
For n > 0, a(2n-1) = A129815(2n-1); for n > 1, a(2n) = A129815(2n) + A129815(2n-2). - Vladimir Shevelev, Apr 29 2008
We conjecture that for n >= 3, A000111(2n)/a(2n) < e < A000111(2n)/A129815(2n), so that A000111(2n)/a(2n) increases while A000111(2n)/A129815(2n) decreases (and both quotients tend to e). - Vladimir Shevelev, Apr 29 2008
From Emeric Deutsch, Aug 06 2009: (Start)
Alternating permutations are also called down-up permutations.
a(n) is also the number of alternating permutations of {1,2,...,n} having exactly 1 fixed point (see the Richard Stanley reference). Example: a(4)=2 because we have 4132 and 3241.
(End)
LINKS
R. P. Stanley, Alternating permutations and symmetric functions, arXiv:math/0603520 [math.CO], 2006.
FORMULA
a(n) = A162979(n,0). - Alois P. Heinz, Nov 24 2017
EXAMPLE
a(4) = 2 because we have 3142 and 2143. - Emeric Deutsch, Aug 06 2009
MATHEMATICA
nmax = 30;
fo = Exp[e*(ArcTan[q*t] - ArcTan[t])]/(1 - e*t);
fe = Sqrt[(1+t^2)/(1+q^2*t^2)]*Exp[e*(ArcTan[q*t] - ArcTan[t])]/(1-e*t);
Q[n_] := If [OddQ[n] , SeriesCoefficient[fo, {t, 0, n}], SeriesCoefficient[fe, {t, 0, n}]] // Expand;
b[n_] := n!*SeriesCoefficient[Sec[x] + Tan[x], {x, 0, n}];
P[n_] := (Q[n] /. e^k_Integer :> b[k]) /. e :> b[1] // Expand;
a[n_] := Coefficient[P[n], q, 0];
Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 0, nmax}] (* Jean-François Alcover, Jul 24 2018 *)
CROSSREFS
Column k=0 of A162979.
Sequence in context: A324063 A078486 A352364 * A230797 A376585 A128652
KEYWORD
nonn
AUTHOR
Vladeta Jovovic, May 20 2007
EXTENSIONS
a(21) from Alois P. Heinz, Nov 06 2015
a(0)=1 prepended by Alois P. Heinz, Nov 24 2017
a(22)..a(30) from Jean-François Alcover, Jul 24 2018
STATUS
approved