login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number T(n,k) of derangements of [n] having exactly k peaks; triangle T(n,k), n>=0, 0<=k<=max(0,floor((n-1)/2)), read by rows.
3

%I #24 May 31 2018 18:01:08

%S 1,0,1,1,1,3,6,5,33,6,11,152,102,21,663,1068,102,43,2778,9060,2952,85,

%T 11413,68250,50796,2952,171,46332,477978,679368,131112,341,186867,

%U 3192192,7824834,3349224,131112,683,750878,20648088,81751824,64791576,8271792

%N Number T(n,k) of derangements of [n] having exactly k peaks; triangle T(n,k), n>=0, 0<=k<=max(0,floor((n-1)/2)), read by rows.

%H Alois P. Heinz, <a href="/A303564/b303564.txt">Rows n = 0..20, flattened</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Derangements">Derangement</a>

%F T(2*n+1,n) = A129815(2*n+1) = A129817(2*n+1) = A162979(2*n+1,0) = A162980(2*n+1,0).

%e T(5,0) = 5: 51234, 53124, 53214, 54123, 54213.

%e T(5,1) = 33: 21453, 21534, 23451, 23514, 24513, 24531, 25134, 25413, 25431, 31254, 31452, 31524, 34512, 34521, 35124, 35214, 35412, 35421, 41253, 41523, 41532, 43152, 43251, 43512, 43521, 45123, 45213, 51423, 51432, 53412, 53421, 54132, 54231.

%e T(5,2) = 6: 23154, 24153, 34152, 34251, 45132, 45231.

%e Triangle T(n,k) begins:

%e 1;

%e 0;

%e 1;

%e 1, 1;

%e 3, 6;

%e 5, 33, 6;

%e 11, 152, 102;

%e 21, 663, 1068, 102;

%e 43, 2778, 9060, 2952;

%e 85, 11413, 68250, 50796, 2952;

%e 171, 46332, 477978, 679368, 131112;

%e 341, 186867, 3192192, 7824834, 3349224, 131112;

%e 683, 750878, 20648088, 81751824, 64791576, 8271792;

%p b:= proc(s, i, j) option remember; expand(`if`(s={}, 1, add(

%p `if`(k=nops(s), 0, b(s minus {k}, `if`(j>k, 0, j), k)*

%p `if`(i>0 and j>0 and i<j and j>k, x, 1)), k=s)))

%p end:

%p T:= n-> (p-> seq(coeff(p, x, i), i=0..max(0, degree(p))))(b({$1..n}, 0$2)):

%p seq(T(n), n=0..12);

%t b[s_, i_, j_] := b[s, i, j] = Expand[If[s == {}, 1, Sum[If[k == Length[s], 0, b[s ~Complement~ {k}, If[j > k, 0, j], k]*If[i > 0 && j > 0 && i < j && j > k, x, 1]], {k, s}]]];

%t T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, Max[0, Exponent[p, x]]}]][b[Range[n], 0, 0]];

%t Table[T[n], {n, 0, 12}] // Flatten (* _Jean-François Alcover_, May 31 2018, from Maple *)

%Y Columns k=0-1 give: A001045(n-1) for n>0, A301272.

%Y Row sums give A000166.

%Y Cf. A008303 (the same for permutations), A004526, A129815, A129817, A162979, A162980, A216963, A303648 (the same for involutions).

%K nonn,tabf

%O 0,6

%A _Alois P. Heinz_, Apr 26 2018