login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A216963
Triangle read by rows, arising in enumeration of permutations by cyclic peaks, cycles and fixed points.
5
1, 0, 1, 1, 1, 4, 5, 11, 28, 5, 41, 153, 71, 162, 872, 759, 61, 715, 5191, 7262, 1665, 3425, 32398, 66510, 29778, 1385, 17722, 211937, 601080, 443231, 60991, 98253, 1451599, 5446847, 5994473, 1642877, 50521, 580317, 10393114, 49940615, 76889330, 35162440, 3249025
OFFSET
0,6
COMMENTS
See Ma and Chow (2012) for precise definition (cf. Proposition 3).
LINKS
Shi-Mei Ma and Chak-On Chow, Enumeration of permutations by number of cyclic peaks and cyclic valleys, arXiv preprint arXiv:1203.6264 [math.CO], 2012.
EXAMPLE
Triangle begins:
: 1;
: 0;
: 1;
: 1, 1;
: 4, 5;
: 11, 28, 5;
: 41, 153, 71;
: 162, 872, 759, 61;
: 715, 5191, 7262, 1665;
...
MAPLE
p:= proc(n) option remember; expand(`if`(n<4,
[1, 0, x, x*(1+q)][n+1], (n-1)*q*p(n-1)+
2*q*(1-q)*diff(p(n-1), q)+x*(1-q)*
diff(p(n-1), x)+(n-1)*x*p(n-2)))
end:
T:= n-> (t-> seq(coeff(t, q, i), i=0..
max(0, degree(t))))(subs(x=1, p(n))):
seq(T(n), n=0..15); # Alois P. Heinz, Apr 13 2017
MATHEMATICA
p[0] = 1; p[1] = 0; p[2] = x; p[3] = (1 + q) x;
p[n_] := p[n] = Expand[(n - 1) q p[n - 1] + 2 q (1 - q) D[p[n - 1], q] + x (1 - q) D[p[n - 1], x] + (n - 1) x p[n - 2]];
T[n_] := CoefficientList[p[n] /. x -> 1 , q]; T[1] = {0};
Table[T[n], {n, 0, 15}] // Flatten (* Jean-François Alcover, Nov 08 2017 *)
PROG
(PARI) tabf(m) = {P = x; M = subst(P, x, 1); for (d=0, poldegree(M, q), print1(polcoeff(M, d, q), ", "); ); print(""); Q = (1+q)*x; M = subst(Q, x, 1); for (d=0, poldegree(M, q), print1(polcoeff(M, d, q), ", "); ); print(""); for (n=3, m, newP = n*q*Q + 2*q*(1-q)*deriv(Q, q) + x*(1-q)*deriv(Q, x) + n*x*P; M = subst(newP, x, 1); for (d=0, poldegree(M, q), print1(polcoeff(M, d, q), ", "); ); print(""); P = Q; Q = newP; ); } \\ Michel Marcus, Feb 09 2013
CROSSREFS
Column k=0 gives A000296.
Row sums give A000166.
T(2n+1,n) gives A000364(n) for n>0.
Sequence in context: A246495 A050831 A056799 * A259821 A352681 A109503
KEYWORD
nonn,tabf
AUTHOR
N. J. A. Sloane, Sep 27 2012
EXTENSIONS
More terms from Michel Marcus, Feb 09 2013
One row for T(0,0)=1 prepended by Alois P. Heinz, Apr 13 2017
STATUS
approved